Jeff Comer
Associate Professor of Physiology
and Molecular Biophysics
Degrees
B.S. Physics, University of Akron
Ph.D. Physics, University of Illinois at Urbana-Champaign
Contact
Phone: 785-532-6311Email: jeffcomer@ksu.edu
Research
The Comer group uses molecular dynamics simulations, free energy calculation techniques, and other computational methods to design molecules for medical and biotechnology applications. Two current directions are design of therapeutic peptides for cancer immunotherapy and design of peptides that fold and self-assemble at interfaces between nanomaterials and water.
Group webpage: http://www.jeffcomer.us
Selected Publications
Design of Therapeutic Peptides and Drugs
Ishiguro S, Upreti D, Bassette M, Azhagiya Singam ER, Thakkar R, Loyd M, Inui M, Comer J, Tamura M (2022) Local immune checkpoint blockade therapy by an adenovirus encoding a novel PD-L1 inhibitory peptide inhibits growth of colon carcinoma in immunocompetent mice. Transl Oncol 16(101337). doi: https://doi.org/10.1016/j.tranon.2021.101337
Xing H, Rodger A, Comer J, Picco AS, Huck-Iriart C, Ezell EL, Conda-Sheridan M (2022) Urea-modified self-assembling peptide amphiphiles that form well-defined nanostructures and hydrogels for biomedical applications. ACS Appl Bio Mater doi: https://doi.org/10.1021/acsabm.2c00158
Preciado LM, Pereañez JA, Comer J (2020) Potential of matrix metalloproteinase inhibitors for the treatment of local tissue damage induced by a type P-I snake venom metalloproteinase. Toxins 12(1):8. https://doi.org/10.3390/toxins12010008
Preciado LM, Pereañez J, Azhagiya Singam ER, Comer J (2018) Interactions between triterpenes and a P-I type snake venom metalloproteinase: Molecular simulations and experiments. Toxins 10(10):397. doi: https://doi.org/10.3390/toxins10100397
Adsorption and Self-Assembly at Nanomaterial–Water Interfaces
Legleiter J, Thakkar R, Velásquez-Silva A, Miranda-Carvajal I, Whitaker S, Tomich J, Comer J (2022) Design of peptides that fold and self-assemble on graphite. J Chem Inf Model. doi: https://doi.org/10.1021/acs.jcim.2c00419
Thakkar R, Gajaweera S, Comer J (2022) Organic contaminants and atmospheric nitrogen at the graphene–water interface: A simulation study. Nanoscale Adv 4:1741–1757. doi: https://doi.org/10.1039/D1NA00570G
Uhlig MR, Benaglia S, Thakkar R, Comer J, Garcia R (2021) Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. Nanoscale 13:5275–5283. doi: https://doi.org/10.1039/d1nr00351h
Azhagiya Singam ER, Zhang Y, Magnin G, Miranda-Carvajal I, Coates L, Thakkar R,
Poblete H, Comer J (2019) Thermodynamics of adsorption to graphenic surfaces from aqueous solution. J Chem Theory Comput 15(2):1302–1316. doi: https://doi.org/10.1021/acs.jctc.8b00830
Comer J, Chen R, Poblete H, Vergara-Jaque A, Riviere JE (2015) Predicting adsorption affinities of small molecules on carbon nanotubes using molecular dynamics simulation. ACS Nano 9(12):11761–11774. doi: https://doi.org/10.1021/acsnano.5b03592
Protein–Ligand Interaction
Comer J, Bassette M, Burghart R, Loyd M, Ishiguro S, Azhagiya Singam ER, Vergara-Jaque A, Nakashima A, Suzuki K, Geisbrecht BV, Tamura M (2021) Beta-1,3 oligoglucans specifically bind to immune receptor CD28 and may enhance T cell activation. Int J Mol Sci 22(6):3124. doi: https://doi.org/10.3390/ijms22063124
Vergara-Jaque A, Palma-Cerda F, Lowet AS, de la Cruz Landrau A, Poblete H, Sukharev A, Comer J, Holmgren M (2019) A structural model of the inactivation gate of voltage activated potassium channels. Biophys J 117:1–11. doi: https://doi.org/10.1016/j.bpj.2019.06.008
Alarcon EI, Poblete H, Roh H, Couture JF, Comer J, Kochevar IE (2017) Rose bengal binding to collagen and tissue photobonding. ACS Omega 2(10):6646–6657. doi: https://doi.org/10.1021/acsomega.7b00675
Vergara-Jaque A, Fong P, Comer J (2017) Iodide binding in sodium-coupled cotransporters. J Chem Inf Model 57(12):3043–3055. doi: https://doi.org/10.1021/acs.jcim.7b00521
Passive Transport through Cell Membranes
Tse CH, Comer J, Chu SKS, Wang Y, Chipot C (2019) Affordable membrane permeability calculations: Permeation of short-chain alcohols through pure-lipid bilayers and a mammalian cell membrane. J Chem Theory Comput 15(5):2913–2924. doi: https://doi.org/10.1021/acs.jctc.9b00022
Tse CH, Comer J, Wang Y, Chipot C (2018) Link between membrane composition and permeability to drugs. J Chem Theory Comput 14(6):2895–2909. doi: https://doi.org/10.1021/acs.jctc.8b00272
Comer J, Schulten K, Chipot C (2017) Permeability of a fluid lipid bilayer to short-chain alcohols from first principles. J Chem Theory Comput 13(6):2523–2532. doi: https://doi.org/10.1021/acs.jctc.7b00264
Chipot C, Comer J (2016) Subdiffusion in membrane permeation of small molecules. Sci Rep 6:35913. doi: https://doi.org/10.1038/srep35913