Overview of Current Molecular Biology Techniques
VRSP Journal Club June 5, 2017
Chester McDowell
Outline

- DNA – preparation and analysis
- RNA – preparation and analysis
- RNA-Protein Complexes
- Proteins
- Cell Culture
- Organ-on-a-chip
- These all require sterile technique.
- Contamination is always a major concern.
DNA Preparation and Analysis

• DNA Extraction Protocols consist of two parts
 • Lyse cells and solubilize DNA
 • Removal of RNA, Protein, and other macromolecules

• Many labs now use purpose specific kits for extraction
 • Kits include:
 • Lysis Buffer
 • Pre-made columns
 • Other Buffers (Wash buffers and Elution buffers)

• Advantages of these kits
 • Saves time
 • Easy and straight forward
 • Enabling extraction of DNA from different sample types
DNA Preparation and Analysis (cont.)

• Techniques following extraction
 • PCR
 • Restriction digestion

• Agarose gels are used to confirm successful reaction
 • PCR product
 • Complete digestion

• Retrieval of products from gel for downstream applications
 • Kits are available for:
 • Extracting product from gel
 • Cleaning-up PCR reaction after gel confirmation

• Some examples of downstream applications
 • Sequencing: Next Generation Sequencing (NGS), Sanger sequencing
 • Cloning applications
NGS Workflow

http://www.biotechniques.com/multimedia/archive/00231/BTN_A_000114133_O_F_231434a.jpg
Gel Electrophoresis

- Nucleic acids are negatively charged.
- Separate DNA based on size.
- Three major factors to consider when running a gel.
 - Pore size of gel
 - Voltage gradient
 - Salt concentration of running buffer
- There are many different types of gels that can be used for differing applications.
 - Agarose gels
 - Acrylamide gels
 - Polyacrylamide gels with urea for denaturation
Gel Electrophoresis (cont.)

• **Voltage Gradients**
 - Ohm’s law: \(V=IR \)
 - \(V \) = voltage
 - \(I \) = current
 - \(R \) = resistance

• **Factors that effect gradient**
 - Thickness of gel
 - Ionic strength of buffer

• **Increasing gradient increases mobility of sample**

• **Another factor to consider is the heat generated**
 - \(P= I^2R \)
 - \(P= \) Power (watts)
 - Others same as above
 - Gel apparatus can displace a certain amount of heat
 - Exceeding the heat capacity can lead to deleterious effects
RNA Preparation and Analysis

• Extraction of RNA is very similar to DNA
• However, samples are generally treated with proteases to remove ribonucleases that can degrade RNA
• RNA is not as stable as DNA and rapidly degrades
 • Must be kept on ice
• Why extract RNA?
 • Transcriptomics – mRNA
 • Viral RNA
 • 16S rRNA sequencing
 • microRNA
RNA to dscDNA

1. vRNA
2. GSP
3. First Strand cDNA Synthesis
4. RNA-cDNA Hybrid
5. Second Strand Synthesis
6. Double Stranded cDNA
7. Purify and measure concentration
8. Nextera XT Sample Prep
9. Dilute to 0.2ng/μL
10. Purified PCR Product
RNA-Protein Complexes

- Several techniques for detecting and separating RNA-Protein complexes
 - Density-gradient sedimentation
 - Vertical native polyacrylamide gels
 - Gel filtration

- Assembly of complexes
 - RNA is transcribed that contains 32P.
 - Incubate under conditions that promote the formation of complexes

- Complexes are run on an agarose gel.
- Gels are visualized on a Phosphorimager.

Why study RNA-Protein complexes?
- Protein misfolding
- DNA/RNA does not show any mutations but there is no protein expression or protein is non-functional
- Secondary structure in RNA

What are some advantages of using agarose gels?
- Simple
- Inexpensive
- Rapid
- Multiplex
Protein: Molecular Modelling

- Isolate and purify experimentally expressed proteins
- Obtain structures using NMR or X-Ray Crystallography
- Structures are energy minimized to obtain the lowest energy structure
- Simulations require a structure for initial system setup
- There are many different simulations available for protein complexes. Selection depends on the goal.
 - Molecular Dynamic (MD) simulations: Atomistic
 - Coarse-grain simulations
 - QM/MM simulations
 - Ab initio MD

PDB code: 1DT7
Molecular Modelling (cont.)

• Simulations are commonly used for drug screening
 • Protein-drug interactions
 • Drug docking
• In some cases protein structures can not be solved with NMR or X-Ray crystallography and require some computational studies.
 • Homology Modelling
 • De-novo Modelling
 • Foldit – video game where players try to fold a protein sequence into a 3D structure
Why do we use molecular modelling?

• Proteins have dynamic structures.
• Reduce the cost for experiments.
• However, there are limitations:
 • Size of the system that can be simulated
 • Computational cost
 • Accuracy of the force field
 • Experience of the user
Cell Cultures

• Some common uses in labs include
 • Titrations
 • Immunocytochemistry
 • Virus amplification
 • Virus Neutralization
 • Plaque Assays

• There are many cell lines available that are immortalized
 • MDCKs
 • BHK
 • Hela cells
 • Vero cells
 • etc

• Some experiments many require cell lines that are not available, so primary cell lines maybe required
 • These are cells isolated from a tissue sample and propagated in tissue culture flasks or petri dishes
 • They have a reduced passage capacity
Cell Culture (cont.)

- Cells require nutrients which are supplied by the cell media which will vary depending on the type of cells used.
 - In general, the media contains:
 - Amino acids, glucose, salts, vitamins, antibiotics and antifungal agents.
 - FBS and L-glutamine may be added.
- Depending on the cell line replication time will vary.
- Once cells have reached 85-95% confluency, they can be split.
 - Things to avoid:
 - Splitting cells too soon.
 - Splitting cells when they are overgrown.
- Since the cells are grown on the surface of a flask, they require the use of trypsin for detachment.
- Several new flasks can be made from one confluent flask.
- Labs generally keep frozen stocks of cell lines commonly used by the group.
 - Reasons:
 - Contamination.
 - Cells get old.
 - Certain cell lines may not be used all of the time.
 - Reduce cost of cell maintenance.
- Some experiments may require a certain cell density or cell viability:
 - Hemacytometer.
 - Trypan Blue Staining.
Organ-on-a-chip

• Integration of 3D organ specific tissue and microfluidic network.

• This technology enables the study of drug and toxin metabolism by different organs.

• Reduce the use of animals for toxicity and early drug testing.

• Disadvantages
 • Experimental/novel technology – requires validation
 • Low throughput
 • Costly
 • Use of immortalized cells can lead to misrepresentation of organ function
Human-on-a-chip Example