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The complexity of cancer and the vast amount of experimental data available have made computer-aided ap-
proaches necessary. Biomolecularmodelling techniques are becoming increasingly easier to use,whereas hardware
and software are becoming better and cheaper. Cross-talk between theoretical and experimental scientists dealing
with cancer-research from a molecular approach, however, is still uncommon. This is in contrast to other fields,
such as amyloid-related diseases, where molecular modelling studies are widely acknowledged. The aim of this
review paper is therefore to expose some of the more common approaches in molecular modelling to cancer
scientists in simple terms, illustrating success stories while also revealing the limitations of computational studies
at the molecular level.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

A large number of proteins have been shown to be involved in
various types of cancer, from the ubiquitous tumour suppressor p53
to metastasis promoters such as S100A4. Accordingly, whereas drug
design was once aimed primarily at the tumour level, many newer
drugs are protein-specific. Such drugs often have less severe side
effects, because they selectively aim at proteins that are related to
cancer progression. Moreover, owing to the availability of affordable
sequencing techniques and plethora of genetic markers, personalised
treatments are beginning to be available [1]. On the other hand, suffi-
cient knowledge about the biology of many cancer-related proteins
and mutations is still missing. Very often, a marker of a certain cancer
is identified but it is not clear how it is related to the specific disease.

Many details on a given protein's function(s), and how it is altered
by different mutations, become clear once the protein's structure is
known. Proteins, however, are not static and it is their dynamic land-
scape that determines their roles [2]. Nuclear magnetic resonance
(NMR), Förster resonance energy transfer (FRET), X-ray Laue diffrac-
tion, extended X-ray absorption fine structure (EXAFS) and other bio-
physical methods can shed light on the dynamics of macromolecules,
but suffer from some limitations in terms of sensitivity, applicability,
and time scales. Computer-aided studies can complement molecular
studies and yield details that are not available to the experiment.
Molecular modelling approaches therefore become increasingly use-
ful in many clinically-oriented studies, e.g., amyloid related diseases
[3]. Such methods, however, are sometimes inaccessible to the cancer
researcher owing to lack of understanding on their potential use,
advantages and limitations.

This review article deals with molecular modelling in cancer re-
search. It aims to acquaint the reader with molecular modelling and
some of the most-commonly used methods in the field, in simple
terms that would be accessible to non-experts. The scope is limited
to molecular modelling methodologies, which are a relatively small
part of computational biology. Bioinformatics and mathematical ap-
proaches to cancer research are extensively covered in the literature
[4–7], and will not be discussed here.

This article is organised as follows. In the next section, some of
the most relevant methods of molecular modelling are explained,
with an emphasis on methods that have been used or can be of use
in cancer research. The aim is to acquaint the readerwith themolecular
modelling methods and the jargon, rather than explain the governing
mathematical and physical principles; details on the implementation
can be found in the molecular modelling literature [8,9]. The third
section describes a few interesting applications of the methods in
cancer-related studies. In the fourth section,we give our view on the ex-
ertion ofmolecularmodelling in cancer research and suggest how it can
be routinely applied in molecular studies related to cancer. While the
methods may be of use in many studies related to molecular biology
and medicine, this article provides added insights with respect to use
of the molecular modelling techniques within cancer research.

2. Methods of molecular modelling and simulation

“Molecularmodelling” has gone a longway since its early days.Most
of the readers are probably familiar with the plastic balls and sticks
that connect them, which were used in chemistry classes to teach
how molecules are made from atoms. Such models had also been
used in research [10], but were replaced with computer-generated
models. Today, “molecular modelling” refers to the application of
computer-generated models in molecular studies ranging from a few
atoms to multitude of biomolecules. These models are used to simulate
processes that may be as fast as 10−15 s or as slow as a few seconds.
Clearly, the accuracy and level of detail depend on the size and time-
scale of the system. Sub-Ångström differences between structures can
be studied and have a large influence on the binding of a drug molecule
to its receptor, whereas the size of protein complexes is three orders of
magnitude larger. These differences necessitate the use of different
methods. In general, the more accurate the method at hand, the more
time and computational resources will be needed to get a meaningful
result (for systems of similar size). The choice of the modelling method
is therefore made based upon the problem at hand.

Although it is possible to model a collection of molecules, such as
multiple peptides and lipids [11], most molecular modelling studies
related to cancer research are carried out in atomistic details. These
methods, however, are limited in scope tomolecules forwhich structur-
al data are available from experiments (X-ray crystallography or NMR)
or can be accurately modelled (see below). Atomistic modelling is also
limited in size and timescale. Soluble proteins can nowadays be studied
for 10−7–10−6 s, enough to shed light on some domainmotionswithin
a protein but not on large conformational changes such as protein
folding or activation of channels. Longer processes and larger com-
plexes can still bemodelled, but necessitate sophisticated andmore ap-
proximate methods. Several common molecular modelling approaches
and applications are discussed in this section. The principles are
explained in simple terms, and few examples of applications are given.
In discussing the methods, we (somewhat artificially) group them into
four categories: atomistic simulation andmodellingmethods,modelling
of proteins and protein complexes, modelling of protein–drug interac-
tions, and simplified approaches (that do not yield atomistic details).
There is some overlap between the categories, and some methods be-
long to more than one category, in which case we have put the method
where we feel it is (or has the potential to be) most frequently used in
cancer research. The description of each method begins with an execu-
tive summary of its strengths, limitations and general applicability,
and is followed by amore detailed (but still short) description. A graph-
ical presentation of some of the most commonly used methods is given
in Fig. 1. Several cancer-related studies involving these methods will be



Fig. 1. Illustration of commonly used modelling and simulation methods. The dynamics
of a protein can be studied by employing the Newton equations of motion, to yield an
ensemble of structures that can be viewed as a movie (molecular dynamics). Brownian
dynamics simulations can be used to study the formation of macromolecular complexes.
Finally, normal mode analysis can yield insights into motions of protein domains. All
protein figures in this article were prepared using VMD [12].

Fig. 2. Performing molecular dynamics simulations.
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covered in the following section, and shall provide more light on suc-
cessful applications of molecular modelling in cancer research.

2.1. Atomistic simulation and modelling methods

Molecular simulation methods deal with dynamic processes that
are often difficult to follow experimentally. The applications usually
deal with biomacromolecules, although some of the methods can
be extended to larger systems. All of the methods mentioned here
require structural information at atomic resolution when dealing
with macromolecules. Ideally, this information should come from
high-resolution protein crystallography or NMR, but models (see
below, modelling of protein structures) can also be used.

2.1.1. Atomistic molecular dynamics simulations

2.1.1.1. Strengths. Relatively easy to use, yields dynamics data on the
motions of atoms and molecules in atomistic details — almost as if
you are watching a protein in an animation movie. Many structural
observables can be easily extracted from the simulation. Protein
modelling is often as realistic as it can get.

2.1.1.2. Limitations. Much less accurate when experimental data on
the biomolecule in question are not available. Cannot be used to
study large-scale or long-term processes without extensions (and at
reduced accuracy). Cannot be used as is to study processes that
involve breaking or formation of covalent bonds.

2.1.1.3. Example application. The structure of a protein bound to a drug
molecule is known, and you want to understand whether a certain
mutation may lead to drug resistance because it would reduce the
affinity of the drug molecule.

Molecular dynamics (MD) simulations are widely used to address
biological systems. The method is based on the centuries old Newton's
equations of motion, namely F=ma, where F is the force operating on
a particle, m is its mass and a its acceleration. Starting from a given co-
ordination of the molecule(s), for example a crystallographic structure
of an enzyme-inhibitor complex immersed in water, the forces that
act on the atoms are calculated, and the system is propagated in time
according to Newton's equations of motion. The force is calculated by
differentiating the potential energy at the positions of every atom in
the system. This potential energywill dependon all other atomspresent
and on their locations.

In practice, the potential energy of the system is estimated based on
a set of equations and parameters, collectively known as a force field.
Relatively short time steps, usually of 1–4 femtoseconds (fs, 10−15 s)
are used in simulations at the atomic scale (i.e., where a molecule is
represented as a collection of atoms). Accordingly, a simulation of
0.1 μs typically requires 50 million steps. An illustration of the method
is given in Fig. 2.

The output of an MD simulation is a set of particle velocities and
coordinates, which is termed trajectory. Free and commercial pro-
grams are available for viewing trajectory files. Using such programs,
the researcher can watch the simulation just like a molecular movie,
zooming in and out or following on the frames that appear to be
more interesting. The simplicity of the approach and the availability
of many different MD engines (software than can run MD, see Table
A.1 in the Appendix A) and molecular viewers (Appendix Table A.2)
are two of the most compelling reasons for the method's popularity.
The trajectory can also be used for carrying out calculations that
yield physical observables of a system, such as the prevalence of
hydrogen bonds, distance between atoms or residues, modification
of secondary structures and volumes of binding sites. Such observ-
ables often yield a biological insight.

What are the uses of MD simulations in a biological context? As a
complete answer to this question cannot be given, a few recent exam-
ples follow. Transporter proteins are particularly amendable to MD

image of Fig.�2
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simulations, because structural and mutational data can only yield
limited insights about the dynamics of the process (How is the mole-
cule actually being transferred? Which residues play a major role?
Why is a certain mutation important even when the residue is not in-
volved in contacts with the substrates according to the known struc-
tural information?). In the field of computer-aided drug design, MD
simulations can infer on correct and incorrect modes of binding of a
molecule [13] and the energetics of the binding reaction, e.g., the
interplay between electrostatic and hydrophobic forces. Post transla-
tional modification can also be studied, through a comparison of the
modified and non-modified proteins; a similar comparison can be
used to infer on the mechanism of action of a drug molecule.

The many strengths of MD should not obscure its limitations. First,
out-of-the-box simulations, using established protocols, are generally
limited to soluble proteins of known structures that are not modified
or bound to any cofactors of inhibitors. Dealing with multivalent
metal ions, cofactors, membranes or drug molecules requires addi-
tional expertise and often specific protocols or parameters must be
devised. Second, MD simulations are limited to time-scales of less
than 1 ms. Conformational changes involving whole protein domains
necessitate the use of more elaborate or approximate methods or
specialised hardware [14] and may suffer from numerical inaccura-
cies [15,16]. Third, MD simulations use an approximate function to
calculate the potential energy, that fails to properly describe the sys-
tem in some cases (but generally works well for biomolecules under
ambient temperature and pressure). Finally, canonical MD simula-
tions that employ interaction potentials that are based on classical
mechanics are not suitable to followon reactions that involve the break-
ing or formation of covalent bonds. Some of these limitations can be
overcome by using related techniques, such as simulations based on
quantum mechanics (QM/MM and AIMD) or using simplified models
(coarse-grained MD), which are described below. Coarse-grained MD
simulations on the one hand and QM/MM studies on the other are be-
coming increasingly popular and challenge the dominance of atomistic
MD based on classical (=non-quantum) mechanics.

2.1.2. Brownian dynamics

2.1.2.1. Strengths. Physics-based yet fast to use and can deal with large
biomolecular complexes.

2.1.2.2. Limitations. The molecules are treated as rigid bodies, i.e., no
information on the internal dynamics of themolecules can be simulated
or yielded.

2.1.2.3. Example application. You know the structures of two proteins
and have some information of their complex, e.g., from cross-linking
experiments. Brownian dynamics can then be used to follow on com-
plex formation, for example when more than one binding mode is
possible.

Brownian dynamics (BD) simulations in biomedicine are most often
used to follow on the formation of complexes, e.g., between two or
more proteins. Such systems are too large and evolve too slowly to be
studied directly by MD, especially when several binding modes are
possible. Therefore, more approximate methods must be used to infer
how the complex is formed. MD simulations can be used at a later
stage to discriminate between several potential complexes.

In the context of biomolecular BD simulations, the forces are
extracted from the electrostatic potentials that surround the particles.
Brownian dynamics simulations can yield trajectories and rates of
encounter between the components thus allowing a comparison be-
tween different complexes. Applications are by no means limited to
protein–protein interactions, and BD have been applied also to simu-
late the movement of ions in membrane channels [17], study en-
zyme–ligand association [18], and model the binding of proteins
and DNA [19], to give a few examples. Several MD simulation
packages can be used for BD simulations as well, but specialised soft-
ware also exist (Table A.4).

2.1.3. Modelling based on quantum chemistry

2.1.3.1. Strengths. Accuracy and scope — can deal with processes that
involve covalent bond making and breaking or excited states of
molecules that cannot be studied by more approximate methods.

2.1.3.2. Limitations. Slow, difficult to master, available only for short
timescales and small systems.

2.1.3.3. Example application. You want to understand how a certain
carcinogen interacts with nucleic acid bases.

Quantum chemistry utilises quantum mechanical (QM) principles
for chemical calculations. Thus, it can offer a better accuracy compared
with molecular dynamics and other methods that rely on energy func-
tions that do not involve quantum-mechanics, and can deal with
processes involving bond-breaking and formation. Unfortunately, the
computational cost of employing quantum chemistry programs can be
prohibitive. Moreover, the underlying principles (quantummechanics)
may be non-intuitive and difficult to grasp by non-experts. To make
things even more complicated, quantum chemists use a highly specific
jargon that makes it even more difficult to follow the relevant publica-
tions compared with other molecular modelling methods.

Due to the high computational cost, QM calculations are very rarely
performed on full-size proteins, although this situation is likely to
change because methods to deal with large molecules, e.g., [20,21],
are being actively developed. Instead, a model of the system of interest
(e.g., a catalytic site of an enzyme) is constructed by taking into account
a subset of atoms that directly participate in the reaction. The rest of the
system is either ignored or approximated by use of fastermethods (e.g.,
quantum mechanics/molecular mechanics, or QM/MM). Some of the
limitations of traditional QM methods are alleviated by the use of the
popular density functional theory (DFT). Developed by Hohenberg,
Kohn and Sham in the 1960s [22,23], the theory has since then
transformed into a field in itself. Today, it is commonly applied in a bio-
logical context. In connection with cancer research, quantum chemistry
has been used to reveal how carcinogens interactwith the DNA [24], for
the design of chemotherapies [25], to study the mechanism of histone
deacetylation [26], and in many additional applications.

2.1.4. Ab initio molecular dynamics

2.1.4.1. Strengths.Modelling dynamics processes asmolecular dynamics
with the accuracy offered by quantum chemistry.

2.1.4.2. Limitations. Limited to very small systems (tens of atoms) and
very short time scales (10−11 s).

2.1.4.3. Example application. Following on an enzymatic reaction using
a model system based on the active-site structure.

Ab initio MD (AIMD) methods aim to bridge molecular dynamics
with quantummechanics. Using these methods, a system is simulated
by Newtonianmechanics, but the forces that operate on the atoms are
calculated from quantum-mechanical principles. The advantage in
accuracy is countered by the complexity of ab initio MD, rendering
the method much less widely used for dealing with biological macro-
molecules. It is both more demanding from a computational aspect
and more challenging to employ from a scientific point of view
(i.e., it requires expertise and a deeper understanding). Nevertheless,
ab initio molecular dynamics simulations have been used in the field of
cancer research (see below for an example discussing radiotherapy).
Car–Parrinello molecular dynamics (CPMD) [27] is a popular imple-
mentation of ab initio molecular dynamics. Path-integral molecular
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dynamics [28] is another implementation, that enables the study of
nuclear tunnelling as occurs e.g., in some enzymes [29].

2.1.5. Quantum mechanics/molecular mechanics

2.1.5.1. Strengths. Enables the application of quantum mechanics-
based approaches to atomistically large systems such as proteins.

2.1.5.2. Limitations. As slow as quantum chemistry.

2.1.5.3. Example application. Following on an enzymatic reaction, tak-
ing into account all of the protein residues, not just the catalytic site.

Quantum mechanics/molecular mechanics (QM/MM) methods
treat part of the system (e.g., the catalytic site of an enzyme and a
substrate) quantum-mechanically and the rest in more approximate
terms, usually similar to normal MD simulations (see Fig. 3 for an il-
lustration of the scale of QM/MM and QMmethods). Thus, macromol-
ecules can be studied even if the reaction involves bond-making and
breaking. The calculation is about as fast (or as slow) as the QM calcu-
lation of the small area of interest. From a practical point of view,
employing QM/MM requires expertise in both methods and in their
coupling. Nevertheless, QM/MM based methods are broadly used in
biology. Some applications relevant to cancer research include
modelling of drugs that covalently bind DNA [30], and the mechanism
of mitogen-activated protein kinase [31].

2.1.6. Normal mode analysis

2.1.6.1. Strengths. Simple, fast and relatively easy to do— a quickway to
get a glimpse on the dynamics at atomic resolution without running a
simulation.

2.1.6.2. Limitations. No correlation to timescales, not as broad and
accurate as MD.

2.1.6.3. Example application. You study a large protein with several
domains and want to learn how the domains move one with respect
to the other, because this is relevant to that protein's function.

In normalmode analysis the system (e.g., a protein or a biomolecular
complex) is assumed to be in equilibrium, while it still undergoes some
motions. These motions are modelled as harmonic (similar to a bead on
a spring). Low frequency modes represent collective motions that
Fig. 3. The scale of QM/MM and QM methods. In QM/MM simulations, a small region, such a
macromolecule is approximated (left). Fully QM simulations such as ab-initio MD study only
aspartic proteases that is associated with poor prognosis in breast cancer [61]. The catalytic
principles of these enzymes [62].
involve large parts of the system (e.g., two protein domains moving to-
wards and away from each other), whereas high frequency (fast)modes
correspond to local fluctuations that are usually of smaller interest. Ap-
plying NMA to proteins is simpler and faster than running a molecular
dynamics simulation and has the advantage that the global motions
(that are usually more relevant from a physiological standpoint) are im-
mediately separated from local deformations, something that requires
an additional analysis for molecular dynamics trajectories. There are,
however, several drawbacks of the method. First, motions of proteins
are not entirely harmonic [32]. Second, the system needs a proper prep-
aration before performing normal mode analysis rigorously (its poten-
tial energy must be brought very close to minimum), which is often a
difficult task for systems such as proteins with thousands of degrees of
freedom. Similar to MD, one does not have to use atomistic potentials
in NMA, and simplified models often yield meaningful results (see also
the section on Elastic network models below). Yet, it is included here
under atomistic modelling and simulation methods, since the computa-
tional cost of atomistic NMA of proteins is usually not prohibitive.

NMA can have several applications related to cancer research,
including a comparison between wild-type and mutant kinases [33]
andmodifications of the protein dynamics upon binding of other mole-
cules (target proteins, DNA or inhibitors). In practice, normal mode
analysis is performed by use of the same programs as used for carrying
outmolecular dynamics simulations (Appendix: Table A.1). In addition,
several web servers can be used for NMA (Table A.5).
2.2. Modelling of structures of proteins and protein complexes

The protein data bank (PDB) contains about 87,700 biomolecular
structures (January 2013), of which 97% include proteins, and almost
all of the rest are nucleic acids. Many of these are redundant, and
atomic-resolution structures of clinically important proteins are still
missing (note that selecting only structures with sequence identity
of 90% or less, the PDB contains only about 33,700 entries). Whereas
some of the missing proteins are difficult to crystallise or resolve,
others include intrinsically disordered regions rather than a defined
three dimensional structure [34]. Moreover, proteins and peptides
often alter their structure upon forming macromolecular complexes.
Therefore, even if the individual structures are known, it may still
be necessary to compute the structure of a complex. Fortunately,
powerful methods for protein structure prediction exist (see below
s enclosed in a rectangle, is simulated at an accurate QM level and the other part of the
a small part of the macromolecule (right). The protein displayed here is cathepsin D, an
site of aspartic proteases was studied at a full QM level, revealing some organisational

image of Fig.�3
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and Fig. 4), and are increasingly used to shed light on the conforma-
tions of proteins and biomolecular complexes.

2.2.1. Homology modelling

2.2.1.1. Strengths. Structuremodelling based on evolutionary principles.

2.2.1.2. Limitations. Can only work when a structure of a related protein
is known.

2.2.1.3. Example application. You want to simulate a human protein,
whose structure is not available, based on the structure of the same
(or a similar) protein but from another organism.
Fig. 4. Modelling of protein structures. Modelling of a protein structure is usually carried
alternative approach is to use software that suggests a protein structure based on its seque
Homologymodelling (also known as comparative or template-based
modelling) is based on the notion that evolutionary conservation in
sequence is correlated with conservation in structure. In other words,
proteins that are similar in sequence are also similar in structure (where-
as the latter is not always true). Thus, given a template protein with a
known structure, which is somewhat similar in sequence to another
protein whose structure is sought after, a computer program is used to
thread the sequence of the protein with the unknown structure onto
the template. Modern homology modelling software enables the use of
multiple templates (for example, where a protein has two domains
and each has a different homologue). The higher the sequence identity
between a modelled protein and a template, the higher the accuracy of
the model. Although many factors can contribute to the success of
out based on sequence similarity to a related protein (homology modelling, top). An
nce, often with the help of a database of short folded domains and their sequences.
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modelling by homology, it is generally said that proteins that have >50%
sequence identity to the target can be modelled accurately, whereas
those with 25–30% sequence identity can still be modelled reasonably
well. Proteins with lower similarity to their templates (‘twilight zone’
cases in the homology modelling terminology) pose a greater challenge,
but may still be modelled.

Homology modelling can be performed by use of freely-available
and commercial software or designated web-servers, some of which
come with video tutorials or additional features such as modelling of
proteins without close homologues. A list of several homology model-
ling servers and non-commercial programs is given in Table A.6. Com-
mercial program packages (Table A.3) deal with homology modelling
as part of their protein analysis capabilities, and the non-commercial
viewerUCSD-Chimera can also be used to perform homologymodelling
with the Modeller program. Webservers that perform homology
modelling are numerous. As is often the case with software that runs
on a webserver (but even more for homology modelling), the default
parameters may need adjustment for non-standard cases. Therefore, it
is advised that users of modelling web-servers consult the documenta-
tion and make several trials to get the best model.

2.2.2. De-novo modelling of protein structures (fold recognition methods)

2.2.2.1. Strengths. Structure modelling when related structures are not
available experimentally.

2.2.2.2. Limitations. Prediction accuracy.

2.2.2.3. Example application. Modelling of a protein with an unknown
fold and no homologous or orthologous structures.

In principle, it should be possible to follow protein-folding in
silico, using simulations starting from the protein sequence or a
very crude model. Limitations in hardware and prediction accuracy
(i.e., the quality of the potential energy function), however, prevent
this from being commonplace [35], even if recent advances hint that
ab-initio protein folding of some proteins (that fold relatively fast)
can be followed by computer simulations [36].

Several homology modelling servers (Table A.6) can be used also
for modelling of proteins that do not have a known orthologue. In ad-
dition, several research groups have developed servers or programs
that use a combination of statistical methods based on the protein
sequence, and/or physics-based energy functions to model protein
structures. A list of servers and programs is given in Table A.7. The
overall performance of many of the servers is evaluated by competi-
tions such as the Critical Assessment of Structure Prediction (CASP).
It is, however, difficult to predict their accuracy for a given protein
with an unknown structure, and the results should therefore be vali-
dated by use of (indirect) experiments or additional simulations.
Some programs allow the use of restraints derived from experiments
(e.g., cross-linking), which can improve the prediction in many cases.

2.2.3. Modelling of protein complexes
The approach to generating a structural model of a complex

involving a protein and another biological macromolecule depends
on the existing data. If the structure of a similar complex is known,
homology modelling can be used. Otherwise, one should first obtain
structures or models of the participants. Then, a model can be gener-
ated by employing a program designated for the task. As is common
in the field, several research groups have generated webservers that
are aimed at modelling protein complexes, and a list of those is
given in Table A.8. Typically, the servers produce a list of potential
structures, sorted according to the underlying algorithm. It is eventu-
ally up to the user to select the model that makes most sense.

To generate models of protein complexes, servers employ different
approaches. One of these is surface complementarity, where the pro-
teins or macromolecules that interact are assumed to complement
each other structurally (i.e., one can fit onto the other, similar to two
pieces of a puzzle). The resulting structures can be refined by geometric
or energetic considerations, e.g., removing clashes between the struc-
tures or calculating electrostatic interactions. Another class of methods
relies on templates from the protein data bank, where a fitting of the
interacting molecules to the template is based on sequence and struc-
tural similarities. The modelled complex is then threaded on to the
template. A third class of programs utilises constraints from experimen-
tal measurements, such as NMR data, small angle X-ray scattering
(SAXS), mutational analysis and cross-linking experiments.
2.3. Protein–drug interaction prediction

Identifying drug-like molecules that can bind to and inhibit the
function of proteins is one of the most important objectives of com-
putational medicinal chemistry. Kinases and various proteases in
particular are interesting cancer-related targets of computer-aided
drug design. The most straightforward approach is to use a structure
of the target protein bound to an inhibitor and identify molecules that
are structurally similar to that inhibitor. These candidate molecules
are then fitted into the binding site, and the complexes are refined
and studied by use of computer simulation methods such as molecu-
lar dynamics as a mean of validation. In many cases, however, this
relatively straightforward approach does not yield any improvements
or has already been exhausted, and it is necessary to identify chemi-
cally novel molecules, which may be more promising as leads to med-
ication. This is when molecular docking approaches are employed.
2.3.1. Docking of drug-like molecules into protein targets

2.3.1.1. Strengths. High throughput, enabling the screening of large
libraries of compounds.
2.3.1.2. Limitations. Accuracy. Further analysis is necessary before ex-
perimental validation. No analysis of ADMET (adsorption, distribution,
metabolism, excretion and toxicity), which can be modelled separately.
Not suitable for discriminating between similar compounds that bind
the same target.
2.3.1.3. Example application. Discovery of novel kinase inhibitors [37].
Docking of drug-likemolecules into target proteins has been studied

for several decades. Advances in hardware and software have led to an
impressive improvement, but no program can accurately predict the
outcome of encounter between a protein and any drug-like molecule;
docking programs try to outperform random selection of molecules,
sometimes by orders of magnitude. Thus, if one wants to search for
potential inhibitors for a given target out of a large dataset of drug-
like molecules, careful application of a docking program will be of use
(even if many of the suggested inhibitors will turn out to be false posi-
tives, and some real binders will not be detected). On the other hand,
docking programs do not excel in discriminating between two inhibi-
tors and judging which of them is more potent. In fact, even highly
accurate and computationally demanding methods are not likely to be
very successful in such an assignment.

Owing to the complexity of the task and the large amount of
computational resources needed for ligand docking into proteins, it is
more common to use a traditional computer program than an online
server, although some servers do exist. Docking servers and programs
are described in Tables A.9 and A.10, where we list several applications,
commercial as well as free. Due to the vast use of docking programs
in the pharmaceutical industry, commercial packages that deal with
docking are quite prevalent and are often used also by academic
researchers.
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2.4. Simplified models that can yield biological insights

Modelling every atom in the molecule comes with a cost, and is not
always meaningful: consider a complex of several proteins, large and
small, that has a regulatory effect in the cell. It is hardly plausible that
the regulatory effect is influenced by every amino acid side chain. In
other cases, it is currently not possible to accurately model the confor-
mation of a protein, because the protein has some unstructured regions
(large flexible regions without any regular secondary structure). A
prominent example of the latter case is p53, which has both folded
and intrinsically disordered domains. Finally, we may need to deal
with a protein with a known structure, but which undergoes a slow
transition that cannot be modelled by atomistic methods because it
takes too long. All of these cases necessitate the use of simplified
models, often in conjugation with some of the methods that are used
also (or predominantly) in atomistic studies such as MD simulations
(Section 2.1.1) or normal mode analysis (Section 2.1.6).

2.4.1. Elastic network models

2.4.1.1. Strengths. Simple, fast and relatively easy to do — a quick way
to get a glimpse on the dynamics without running a simulation. Does
not require demanding preprocessing of the energy in the same way
as atomistic normal mode analysis.

2.4.1.2. Limitations. No correlation to timescales. Depends on empirical
parameters that need to be tuned and are not physics-based.

2.4.1.3. Example application. Applicable to large proteins or biomolecular
complexes with known structure, e.g., myosin.

A great simplification of biological macromolecules can be achieved
by considering interactions of residues or side-chains rather than
atoms, thereby reducing the number of degrees of freedom. This is
the basis for elastic network models (ENM), that model fluctuations in
proteins by considering two adjacent Cα atoms or residues as being
connected by springs. After building the elastic network, a normal
mode analysis is carried out. The calculations are both simpler and faster
than atomistic normal mode analysis (Section 2.1.6), and can therefore
be routinely carried out by use of dedicated web servers (Table A.5),
without the need for specialised software. However, ENM may still re-
quire some tuning, e.g., choosing the right distance between Cα atoms
that are considered bonded in the chain (typically 5–7 Å).

2.4.2. Coarse-grained simulations

2.4.2.1. Strengths. Fast, yields dynamics data on the motions of the
molecules, many structural observables can be easily extracted from
the simulation, the simulated timescales can be orders of magnitude
longer than atomistic simulations.

2.4.2.2. Limitations. Less accurate than atomistic simulations, most
methods are not suitable for studies that involve changes in the second-
ary structure, and it is difficult to model drug molecules and cofactors
such as heme. In addition, the simulation timescales do not correspond
well with the experiment.

2.4.2.3. Example application. Simulations of large proteins or biomolec-
ular complexes.

In coarse-grained simulations, molecules are represented by a
collection of beads rather than atoms. Each bead represents several
atoms (e.g., an amino acid side chain) or residues. Alternatively, in
phenomenological models, a bead (or several beads) corresponds to
a functional group. For example, a lipid can be represented by three
beads — two for the tail and one for the hydrophilic head group
[11]. Coarse-grained calculations are often carried out by running
a molecular dynamics simulation with a regular MD program in
combination with a specific set of parameters (coarse-grained force
field). Other types of calculations, such as normal mode analysis can
also be run with a coarse-grained system.

The main advantage of coarse-grained simulations is their speed. As
each molecule is represented by a smaller number of particles, the sim-
ulations are faster to begin with because fewer degrees of freedom need
to be sampled. Moreover, the timestep of a molecular dynamics simula-
tion is dictated by the frequencies of the fastest motions (bond or angle
stretching). These motions are slower for heavier particles, and there-
fore a larger timestep can be used between two successive iterations
of the program (e.g., 50 fs [38], compared with 1–4 fs for an atomistic
simulation), further speeding up the calculation. Third, water molecules
are usually presented in a relatively crudeway andnot simulated explic-
itly, providing an additional speed-up factor. Thus, coarse-grained simu-
lations can be used to study processes that cannot be followed by use of
atomistic simulations because they are too slow or systems that cannot
be handled because they are too large.

The gain in speed of coarse-grained simulations is countered by some
drawbacks. Themost obvious limitation of such simulations is that atom-
istic details are lost. Moreover, temporal and energetic estimations are
also less accurate than those provided by an atomistic approach. Another
caveat is the limited availability of coarse-grained representations and
force fields. Methods for coarse-graining exist for protein residues and
some types of lipids but generally not for ligands, cofactors, etc.

A hierarchical (ormultiscale) approachmay be used to overcome the
first limitation. The system is studied at the more simplistic coarse-
grained level first. Then, some parts of the trajectory are highlighted by
performing additional simulations in full atomistic details to shed light
on interesting parts of the trajectory. Using such a multiscale approach
necessitates a method whereby the coarse-grained structures can be
represented by atomistic details again (fine graining).

2.4.3. Dissipative particle dynamics

2.4.3.1. Strengths. Fast and flexible, suitable of simulations that range
from protein complexes to cells and tissues.

2.4.3.2. Limitations. Less accurate, requires expertise and often also the
ability to write or modify computer programs.

2.4.3.3. Example application. Simulations of multicomponent cell
membranes (with proteins, cholesterol and attached sugars).

Dissipative particle dynamics (DPD) is a method for coarse-
grained simulations that differs from both molecular and Brownian
dynamics. Initially developed to deal with complex fluids [39], the
method has since emerged as a powerful tool for simulations in biol-
ogy, in systems that scale up to cells and tissues [40]. In DPD, the force
acting upon a bead is calculated by summing up all of the interactions
between a particle and all other particles within a certain cutoff.
These are governed by forces that depend on the chemical bonds
(or other rigid interactions), steric repulsions, the viscosity of the
medium and the size of the interacting particles.

Being less widely used than molecular dynamics, DPD simulations
are usually run by employing designated, home-written or specialised
software such as DPDmacs (www.softsimu.net). Some MD packages
(e.g., HoomD [41] and LAMMPS, http://lammps.sandia.gov) can also run
DPD.

3. Examples of modelling and simulation studies as relevant to
cancer-research

3.1. The catalytic activity of the aldo-keto-reductase tumour marker
AKR1B10

Human small intestine aldose reductase, AKR1B10 is an NADP+-
dependent aldo-keto reductase. Aldo-keto reductases reduce a

http://www.softsimu.net
http://lammps.sandia.gov


9R. Friedman et al. / Biochimica et Biophysica Acta 1836 (2013) 1–14
variety of aldehydes and ketones. AKR1B10 is unique among aldo-keto
reductases in its catalytic efficiency for reduction of retinaldehyde, and
its elevated expression in non-small cell lung carcinoma. The physiolog-
ical role of the enzyme, however, is not clear yet. Depletion of retinoic
acid levels due to increased activity of the enzymemay be related to can-
cer development [42]. Structural details on the interaction between
the enzyme and retinoids may therefore be useful for the design of
specific inhibitors that target AKR1B10. Unfortunately, AKR1B10 and
the structurally similar enzyme AKR1B1 have so far defied attempts for
crysallising with retinoids. A molecular modelling approach was used
to overcome this obstacle [43]. The structure of the enzyme was solved
with an inhibitor bound instead of the native ligand. The native ligand
was then docked into the binding site by a docking program. Molecular
dynamics simulations were later applied to infer on the specificity of
the enzyme to different forms of retinaldehyde (all-trans and 9-cis), in
AKR1B10 and the less activeAKR1B1.Mutational studies and simulations
were used to explain the difference in the activity between the two
enzymes [44]. Overall, these two studies contributed to the understand-
ing on how AKR1B10 binds its substrates. Further modelling studies,
e.g., with QM/MM can be used to shed light on its mechanism of action.

3.2. Understanding the mechanism of tubulin polymerisation inhibitors

Microtubules play a critical role inmitosis and are therefore important
cancer drug targets. Microtubules are formed by polymerisation of
tubulin, and inhibition of tubulin polymerisation leads to cell death. Col-
chicine, a natural inhibitor of tubulin polymerisation, is used for the treat-
ment of gout and Familial Mediterranean fever but is toxic at the doses
necessary for cancer treatment [45]. Other tubulin inhibitors, such as
Taxol, have been proven useful in cancer treatment. Distant structural an-
alogues of colchicine are sought after as novel and less toxic tubulin inhib-
itors. Zhang and co-workers synthesised a group of such inhibitors. Their
most promising compound had anti-tubulin activity IC50 of 3.0 μM [46].
To understand its mechanism of action, the compound was docked to
the crystal structure of tubulin bound to colchicine. Molecular dynamics
simulations were then used to identify the protein residues that interact
with the inhibitor. Similarly, Qian et al. have synthesised another group
of anti-tubulin compounds, and have used molecular modelling to infer
on the bindingmodes of several of them [47]. Both studies may be useful
for further development of tubulin-binding agents.

3.3. Recognition of phosphorylated substrates by Pin1

Isomerisation of the ω-bond backbone angle of proline (peptidyl
prolyl cis-trans isomerisation) initiates protein structural changes and
is involved in biological signalling. Pin1 is an enzyme that catalyses
peptidyl prolyl cis-trans isomerisation when a proline residue is located
immediately after a phosphorylated serine or threonine. The enzyme is
involved in different pathways that lead to oncogenesis, including the
RTK/Ras/ERK, Wnt, TGF-β, NF-κB, Notch and others [48]. Atomistic de-
tails on how Pin1 interacts with its substrates are important for a better
understanding of its mechanism of action, and may enable the design of
inhibitors that mimic the transition state. In the lack of such data from
experiments, Velazquez and Hamelberg [49] used molecular dynamics
simulations. The authors have studies Pin1 in four states, namely free
and bound to the substrate in cis, trans and transition-state conforma-
tions. Their analysis suggests that the structure of the Pin1 active site is
modified in the presence of the specific backbone conformation of the
phosphorylated substrate (conformational recognition), particularly in
the transition state. These findings may be used for rational drug design.

3.4. Autoactivation of ERK2

Extracellular signal-regulated kinase 2 (ERK2) is a kinase involved in
the MAPK signalling pathway. The enzyme is activated by cooperative
phosphorylation events at Tyr185 and then Thr183, which result in a
conformational transition. Mutation of certain ERK2 residues leads to
autophosphorylation and therefore to autoactivation. Barr and
co-workers have studied the active and inactive forms of ERK2 and sev-
eralmutants that cause autoactivation [50]. By use ofmolecular dynam-
ics simulations, they have analysed the differences between the
dynamics of mutants and wt proteins, and showed that the mutations
do not mimic the active conformation. Rather, they lead to domain clo-
sure that is likely to promote autoactivation. Several mutations had
been suggested to render autoactivation based on this study, and all
but one were verified experimentally.

3.5. Engineering of a therapeutic protein

Escherichia coli L-asparaginase (L-ASN) is a protein drug that is used
for treatment of the hematological malignancy acute lymphoblastic
leukemia (ALL) [51], through hydrolysis of serum glutamine and aspar-
agine, which leads to apoptosis. The lysosomal proteases cathepsinB
and asparagine endopeptidase (AEP), which are produced by lympho-
blasts, are involved in degradation of L-ASN. Offman and co-workers
[52] have used structural and bioinformatic analysis to design L-ASN
mutants that have lower affinity to being bound by AEP. Molecular dy-
namics simulations were then used to ensure that the active site of
L-ASN is not modified by the mutations (otherwise L-ASNmay become
less active as a protein drug). Thewild type (wt) protein and four prom-
ising mutants, as well as one mutant that was experimentally found to
be less active (although it is not degraded by AEP) were then subject to
extensive analysis by molecular dynamics simulations. The computer-
aided protein engineering process was successful according to enzy-
matic and cell-toxicity assays. Furthermore, the authors could selective-
ly inhibit glutamine hydrolysis by L-ASN, though a second mutation.
Possible future studies include further optimisation of the protein,
e.g., bymodifications of the antigenic epitopes to avoid allergic reactions.

3.6. Computational approach discriminates functional activity of
p53 mutants

Missense mutations of the tumour suppressor p53 often lead to
loss-of-function, and are therefore termed ‘cancer mutations’. The
activity of p53 may be restored by an additional mutation in a different
region (‘rescue mutations’) [53]. Demir et al. analysed a variety of mu-
tants by functional experiments and measured their thermodynamic
stability compared to the wt protein [54]. In parallel, they carried out
molecular dynamics simulations and calculated the number of distinct
conformations in the dynamic landscape of each mutant. The inactive
mutants were found to be thermodynamically unstable, whereas a
good correlation was found between the number of individual protein
conformations in the simulation trajectory and the conformational
stability. This suggests that mutants that destabilise and inactivate the
protein lead to a larger number of distinct conformations, whereas sec-
ondary mutants that reduce the number of conformations stabilise the
protein. The results of Demir et al. corroborate those of Boeckler and
co-workers, who used a computational screening (docking) approach
aimed at a crevice that is generated by a certain p53 mutation [55]. An
identified compound bound to p53 and made it more stable, effectively
mimicking a rescue mutation.

3.7. Atomistic structures of yttrium-containing glasses for cancer therapy

The radioactive isotope 90Y of the rare earth metal yttrium is used
in cancer therapy due to its cytotoxic effects. Its half-life of 64 h is
long enough to allow treatment but not too long to yield excessive
damage. A solution with 90Y containing glass microspheres (brand
name TheraSpheres) is injected into the blood vessels surrounding
the tumour as a treatment for deeply sealed tumours such as hepatic
neoplasia. To reduce side effects due to the toxicity of 90Y, the glass
should not release yttrium into the blood. Unfortunately, it is
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difficult to analyse the local structure near the yttrium atom by
experimental measurements. On the other hand, the periodic struc-
ture of the clinically important yttrium-alumino-silicate (YAS) glass
is advantageous from a computational point of view, because a
relatively small model can be studied due to the periodicity of the
system (long term interactions are handled by an algorithm that
replicates the small model in all directions). Moreover, the system
is stable enough so that short-term quantum-mechanics based
calculations could be performed and represent its equilibrium prop-
erties (something that cannot be assumed in the case of macromol-
ecules). Accordingly, Christie and Tilocca have studied YAS glass
by ab-initio molecular dynamics simulations [56]. The study eluci-
dated the atomistic structure of YAS glass; future studies can
deal with calculations of the energy needed to remove an yttrium
atom from the glass or with the design of more stable yttrium bind-
ing compounds. Larger samples and perhaps more approximate
methods will be necessary to achieve these aims. The authors have
pinpointed another issue with YAS-microsphere treatment. The
microspheres may reside in the patient's body many years after
treatment, whereas their degree of biocompatibility is still un-
known. Therefore, they have also modelled bioactive glasses that
are known to have high biocompatibility, together with yttrium,
using molecular dynamics simulations [57]. The simulations reveal
two opposing effects of yttrium on the durability of bioactive
glass. This calls for a combined experimental and computational
approach for the design of novel types of 90Y microspheres.

4. Potential applications formolecularmodelling in cancer research

4.1. Prediction of functional consequences of molecular alterations

Next-generation sequencing and other high-throughput tech-
nologies are being extensively exploited to identify genomic,
transcriptomic, proteomic or metabolomic characteristics of clini-
cal samples from patients with cancer. In this context, novel molec-
ular changes associated with cancer and cancer-related processes
may be discovered, but in many cases the biological implications
are unknown. Currently, major efforts are being invested in identi-
fying genomic aberrations of tumour cells. When novel somatic
mutations are detected in genes known to play important roles in
tumour biology, the functional consequences of such mutations
must be investigated. Computational strategies could be an invalu-
able tool in the initial stages of such studies, by structural model-
ling and molecular dynamics simulations, prior to experimental
validation. The strength of using computational methods in at-
tempts to predict biological functions lies in the ability to delineate
complex biological systems into more simplified components. Sub-
sequently, such individual components can be interconnected in
more sophisticated models and thereby successively build a com-
plex biological system. Through such approaches, otherwise com-
plex, time-consuming and expensive biological experiments could
be simplified by generating more specific hypotheses based on
molecular modelling. In the future, as integrated data sets are gen-
erated that comprise information derived from the genomic,
transcriptomic, proteomic and metabolomic levels, the need to
perform more complex simulations with large amounts of data
will be increasingly apparent. Effective modelling of such complex
and large systems is at present not possible, but continued im-
provements in computational power and software will hopefully
allow integration of more data into the simulations.

4.2. Therapeutic aspects

Molecular modelling is already being extensively used in the
development of novel cancer drugs, as exemplified in the previous
sections. The specific interactions between an existing drug and its
target can be modelled (as outlined in Section 2.3.1), and modelling
can be used in the generation of novel and more effective com-
pounds (as exemplified for L-asparaginase in Section 3.5).

One setting that is particularly interesting in the perspective of
targeted therapeutics is the possibility of predicting which compounds
will be active in the presence of resistance mutations. Targeted thera-
pies are being increasingly used in cancer treatment, and the mecha-
nisms of action are often based on the inhibition of a single protein,
such as BCR-ABL, KIT, EGFR, RAF or ALK. However, since these proteins
are all part of complex signalling networks, modifying the activity of
one pathway member will inevitably result in changed expression
levels or activity of other proteins in the pathway. There is also an ap-
parent redundancy of many important signalling networks in cancer
that leads to alternate signalling if one protein is inhibited. Thus, in
almost all cases the disease becomes resistant to the targeted therapy,
and much effort is being devoted to the identification of resistance
mechanisms.

A common resistance mechanism is the occurrence of a secondary
mutation in the target protein, leading to decreased sensitivity to-
wards the inhibitor. One example is the secondary resistance muta-
tion T790M in the EGFR gene, which confers resistance to the EGFR
inhibitors gefitinib and erlotinib in non-small cell lung cancer. Short-
ly after its identification it was suggested, based on structural model-
ling, that the introduction of a bulky methionine residue in position
790, which is located at the entrance to a hydrophobic pocket in
the ATP binding cleft, could lead to steric hindrance and thus inter-
fere with binding of erlotinib and gefitinib [58]. However, subse-
quent studies revealed that the T790M mutant confers resistance
by a higher binding affinity for ATP [59], a mechanism that could be
overcome by irreversible EGFR inhibitors. In this case, further devel-
opment of irreversible EGFR inhibitors may have been halted due to
incorrect conclusions in the former studies. Amore recent example is
the identification of secondary ALK mutations associated with resis-
tance to the ALK inhibitor crizotinib in EML4-ALK positive non-small
cell lung cancer patients [60]. Some of the discovered mutations
were analogous to resistance mutations in other kinases (such as
the T790M gate-keeper mutation), and some seem unique to ALK.
Importantly, computational modelling may be able to predict the
mechanisms of resistance of these new mutations, providing impor-
tant information in the design and development of second genera-
tion ALK inhibitors (Fig. 5).

Both these examples illustrate the utility of molecular modelling
approaches in the development of inhibitors designed to overcome
resistance to targeted therapy. Similar sets of resistance mutations
will probably be identified for other druggable kinases as new
kinase inhibitors are developed, and we predict that molecular
modelling will be crucial in this field in the years to come. One
might argue that as next-generation sequencing techniques are
becoming less expensive and more available, in silico prediction
of novel resistance mutations would be less important. However,
although high-throughput identification of resistance mutations
in a clinical sample may be possible, this number is often quite
high, and the challenge of predicting which mutations are relevant
for function will still remain, leaving a role for molecular modelling
in this setting.

5. Conclusions and outlook

One of the consequences of the post-genomic era is the realisa-
tion that biological macromolecules are much more complex than
thought before. The straightforward relation sequence–structure–
function is evidently too simplistic: many proteins carry out more
than a single function or have a multitude of conformations rather
than a single structure. Molecular modelling approaches can aid to
the understanding of biomolecules by following them on the com-
puter screen, and can save unnecessary experiments, but the



Fig. 5. Alk drug resistance. Several mutations of Alk that are associated with acquired
resistance to therapy (reported in “My cancer genome” [63]) are shown on the structure
of the protein with an inhibitor [64]. The protein is shown in a cartoon representation, the
inhibitor is depicted with balls and sticks and the mutated residues are represented by
coloured spheres (residues Gly in light gray, Phe in purple, Ser in dark yellow, Cys in
light yellow, and Leu in mauve). Notably, some residues confer drug resistance although
they are not adjacent to the inhibitor. Thus, the protein structure alone cannot explain
the acquired resistance. Molecular dynamics simulations can be used to infer onmodified
dynamics of the protein or weakened protein–drug interactions upon mutation, which
can later be followed by structural experiments, e.g., by using NMR.

Table A.1
Molecular dynamics simulation packages. A list of several popular molecular dynamics
simulation packages that are widely used in biology. a Reduced price. b Commercial
licenses available separately.

Program License Particular strengths Website

Amber
[65]

Academica/
commercial

A built-in method to deal with
drug molecules or cofactors

http://ambermd.org

CHARMM
[66,67]

Academica b Very broad functionality
The charmm-gui web server
(see text)

http://charmm.org

Gromacs
[68,69]

Open source Fast, relatively straightforward
wide user support

http://gromacs.org

NAMD
[70]

Freeb Specially designed for use with
massive computer clusters

http://www.ks.uiuc.
edu/Research/namd

Table A.2
Macromolecular viewers. Several popular and freely available programs to view
macromolecular structures and MD trajectory files. All programs have a wide range
of features to choose from and can carry out some calculations.

Program Website Comments

PyMol pymol.org Probably the most widely used
UCSF Chimera [71] cgl.ucsf.edu/chimera Relatively easy to use without

vast knowledge
VMD [12] ks.uiuc.edu/Research/vmd Very comprehensive

Table A.3
Commercial molecular modelling packages. Several commercially available molecular
modelling packages. The packages listed here can be used for molecular dynamics sim-
ulations, homology modelling, docking drug-like molecules into proteins and analysis
of the results. The programs also include graphical user interface that can be used for
preparation of the data and viewing of the results. See the distributors' sites for details.

Program Distributer

Discovery Studio Accelrys
Molecular Operating Environment (MOE) Chemical Computing Group
SYBYL-X Tripos

Table A.4
Brownian dynamics simulation software.

Program Website

Browndye [72] browndye.ucsd.edu
Brownmove [73] gepard.bioinformatik.uni-saarland.de/services/brownmove
Macrodox [74] iweb.tntech.edu/macrodox
SDA [75] projects.villa-bosch.de/mcmsoft/sda
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limitations of molecular modelling methods should not be put
aside. Importantly, whereas the computations become increasingly
more user-friendly, and many calculations can be carried out online
by users without deep understanding of the underlying methods,
careful interpretation by an expert is almost always necessary to
make sure that the results are indeed meaningful, which calls for a
collaboration between molecular modellers and experimentalists.
Additionally, graduate students with a background in experimental
cancer-research and an inclination to quantitative studies may in-
vest the time and effort to attend some of the (too few) courses
that explain the methods as well as the underlying theories.

Realising the pros and cons of the approach is necessary to be
able to validate its potential use in the field, and we have tried to
provide some information that would enable cancer researchers to
study the matter more closely. In our view, many of the tools de-
scribed in this paper have the potential to become a useful part in
the cancer-research arsenal, as they already are in other fields. We
therefore have little doubt that molecular modelling approaches
will become widely used for cancer research in the years to come,
in particular for the design of drugs and other treatments and the
understanding of biological networks.
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Table A.5
Normal mode analysis (NMA) and elastic network model (ENM) servers.

Server Website NMA/ENM Special features

AD-ENM enm.lobos.nih.gov ENM (1) Generates paths between protein
conformations [76].
(2) Can be used in the context of
protein structure prediction [77].
(3) Can deal with nucleic acids as well.

ANM [78] ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi ENM
el-Némo [79] www.igs.cnrs-mrs.fr/elnemo ENM Advanced options for comparing two conformations.
oGNM [80] ignm.ccbb.pitt.edu/GNM_Online_Calculation-t.htm ENM Handles nucleic acids
NOMAD-Ref [81] lorentz.immstr.pasteur.fr/nma ENM & NMA Analysis of collective motions [82]
WEBnm@ [83] apps.cbu.uib.no/webnma NMA Comparative analysis (several protein structures).

Table A.6
Homology modelling servers and non-commercial programs (for commercial programs, see Table A.3).

Servers:

Server Website Additional features

CPHmodels [84] http://www.cbs.dtu.dk/services/CPHmodels-3.2 Extended search for template sequences.
ESyPred3D [85] http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred
Phyre2 [86] http://www.sbg.bio.ic.ac.uk/phyre2 (1) Video tutorials

(2) Ab-initio modelling (no sequence).
(3) Binding site prediction.

PS2 [87] ps2.life.nctu.edu.tw
PS2-v2 [88] ps2v2.life.nctu.edu.tw For use with low-identity templates
Swiss-Model [89] http://swissmodel.expasy.org (1) Automated modelling of homo-oligomeric assemblies.

(2) Modelling of essential metal ions in protein structures.
(3) Includes a repository of models.

Programs:

Program Website Additional features

Modeller [90] salilab.org/modeller Many additional tasks, e.g., ab-initio modelling of loops.
DeepView [91] spdbv.vital-it.ch Viewer, protein analysis.
Nest [92] wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:nest

Table A.7
Web servers for de-novo protein structure prediction. a Combined de-novo and homology modelling.

Server Website

chunk-TASSER [93] cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
Fobia [94] bioinfo3d.cs.tau.ac.il/FOBIA
meta-TASSER cssb.biology.gatech.edu/skolnick/webservice/MetaTASSER/index.html
pro-sp3-TASSER [95] cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/index.html
I-TASSER [96] zhanglab.ccmb.med.umich.edu/I-TASSER
Quark online [97] zhanglab.ccmb.med.umich.edu/QUARK
Robettaa [98] robetta.bakerlab.org

Table A.8
Web servers for protein complex structure prediction.

Server Website Molecules Method(s)

3D-Garden [99] www.sbg.bio.ic.ac.uk/3dgarden Proteins, polynucleotides Surface complementarity
ClusPro [100] cluspro.bu.edu Protein Surface complementarity, energetics
COTH [101] zhanglab.ccmb.med.umich.edu/COTH Proteins Threading
FoXS Dock [102] modbase.compbio.ucsf.edu/foxsdock Proteins SAXS constraints
GRAMM-X [103] vakser.bioinformatics.ku.edu/resources/gramm/grammx Proteins Surface complementarity, energetics
Haddock [104] nmr.chem.uu.nl/haddock Proteins, polynucleotides and other Experimental constraints
PatchDock [102] bioinfo3d.cs.tau.ac.il/PatchDock Proteins Surface complementarity

Table A.9
Web servers for docking of drug-like molecules into proteins.

Server Website Features/limitations

Dock Blaster [105] blaster.docking.org Includes a large database of drug-like molecules.
Docking@UTMB docking.utmb.edu Several databases available.
DockingServer www.dockingserver.com Commercial.
iScreen [106] iscreen.cmu.edu.tw Docking of compounds from traditional Chinese medicine.
SwissDock [107] swissdock.vital-it.ch Docks one or a few molecules, not a library.
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Table A.10
Docking programs. Commonly used computer programs for docking of drug-like molecules into proteins. See also the commercial modelling packages in Table A.3.

Program License Website Features/limitations

Autodock [108] Open source autodock.scripps.edu External graphical user interface.
Autodock Vina [109] Open source vina.scripps.edu Designed for ease of use.
Dock [110] Academic dock.compbio.ucsf.edu Can deal with RNA molecules as targets.
FlexX [111] Commercial www.biosolveit.de/flexx
FRED [112] Commercial www.eyesopen.com/oedocking
Glide [113,114] Commercial www.schrodinger.com/products/14/5/
GOLD Commercial www.ccdc.cam.ac.uk/products/life_sciences/gold
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