

Effect of proteinase inhibition on glucagon-like peptide-2 concentrations in blood samples from healthy cats

Background

- GLP-2 is an enteroendocrine hormone with intestinal protective and proliferative effects
- GLP-2 secretion is stimulated by enteral nutrition
 - ➢ GLP-2 is co-secreted with GLP-1 from intestinal endocrine L-cells
- > The peak secretion time for GLP-1 in cats and humans is between 30 75 minutes Glucose-dependent insulinotropic polypeptide mediates GLP-2 secretion and is stimulated more by fat than other nutrients in cats
- \blacktriangleright GLP-2 is rapidly broken down (T_{1/2} = 7 minutes in rats and humans) from the active form (1-33) GLP-2 to the inactive form (3-33) GLP-2 by the enzyme dipeptidy peptidase IV (DPP-IV)
- Previous studies based on human GLP-2 found that use of the proteinase inhibitors Diprotin A and Aprotinin was the only viable method that delayed peptide degradation and resulted in increased measured concentrations > Diprotin A is a DPP-IV specific inhibitor
- > Aprotinin is a trypsin inhibitor
- While the sequence of GLP-2 in cats is unknown, GLP-2 is highly conserved, with 100% conservation of the N-terminal sequence across all studied mammalian species

Objective

> To determine the effect of sample collection with or without proteinase inhibition on measured pre- and post-prandial plasma GLP-2 concentrations in healthy cats.

Hypothesis

Measured GLP-2 concentrations will be significantly greater in samples with prote inhibitors added.

Materials and Methods

- Study design: Prospective
- > Population: 6 healthy, client-owned cats
- > Eligibility was based on physical exam including a body condition score of 4-6/9, and lack of abnormalities on blood work (CBC, serum chemistry profile)
- > Exclusions: <1 year of age, systemic or GI clinical signs, medications other than preventatives, prescription diets to control historical GI signs
- \succ Sample collection:
 - \blacktriangleright After a \geq 10 hour fast a pre-prandial blood sample was obtained
 - > The cats were fed a standardized commercial diet (Protein 10.4 g/100 kcal, Fat 7.25)
 - g/100 kcal, CHO 0.12 g/100 kcal) at ¼ resting energy requirements
 - > A second, 1-hour post-prandial blood sample was obtained
- Sample handling:
- > Blood was collected into chilled EDTA tubes on ice
- \succ At the time of collection, half of each sample was immediately mixed with 10% volume per blood volume of the proteinase inhibitors Aprotinin and Diprotin A (ILE-PRO-ILE)
- > Samples were immediately centrifuged (temperature controlled), separated, and stored at -80° C
- >GLP-2 concentrations were assessed using commercial ELISA tests marketed for cats based on the human sequence of (1-33) GLP-2 (MyBiosource)
- \succ Monoclonal mouse capture antibody
- Polyclonal rabbit detection antibody
- ▶ Reported assay detection limits are 0.96 2.14 ng/ml with a sensitivity of 0.1 ng/ml in feline samples; however, results using this ELISA have not been published
- > All samples were run in duplicate on two 96 well plates
- > Plate one consisted of samples without proteinase inhibitors and six random samples (three from plate one and three from plate two)
- Plate two consisted of samples with proteinase inhibitors added and six random samples (three from plate one and three from plate two)

Zackery Bieberly, Leah Freilich, Maria Jugan

Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.

Data

► Population:

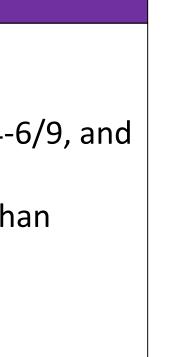
➢ 5 spayed females, 1 castrated male

> Breeds: 5 domestic short hair, 1 sphinx

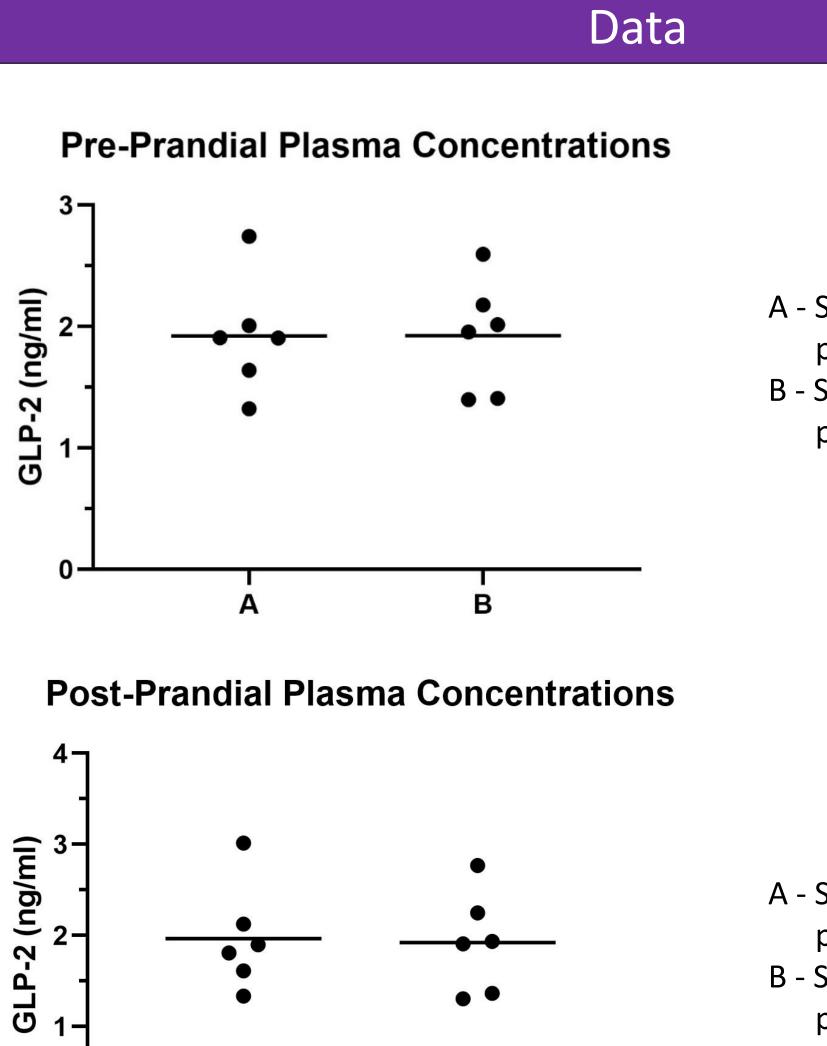
➤ Median age: 3.5 years (Range 1.5 - 6.9 years)

 \succ Median weight: 4.35 kg (Range 3.8 - 4.96 kg)

 \geq Median body condition score: 5/9 (Range 4 - 6/9)

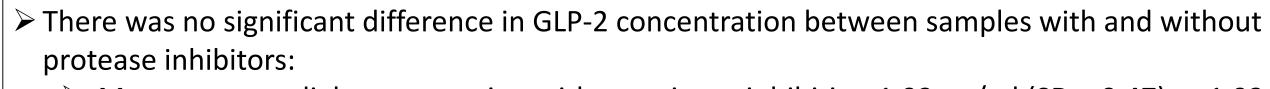



Statistical Analysis


- > Data were assessed for normality using the Shapiro-Wilk test The concentration of GLP-2 was compared between samples with and without proteinase inhibition using a paired t test
- > p < 0.05 was considered significant

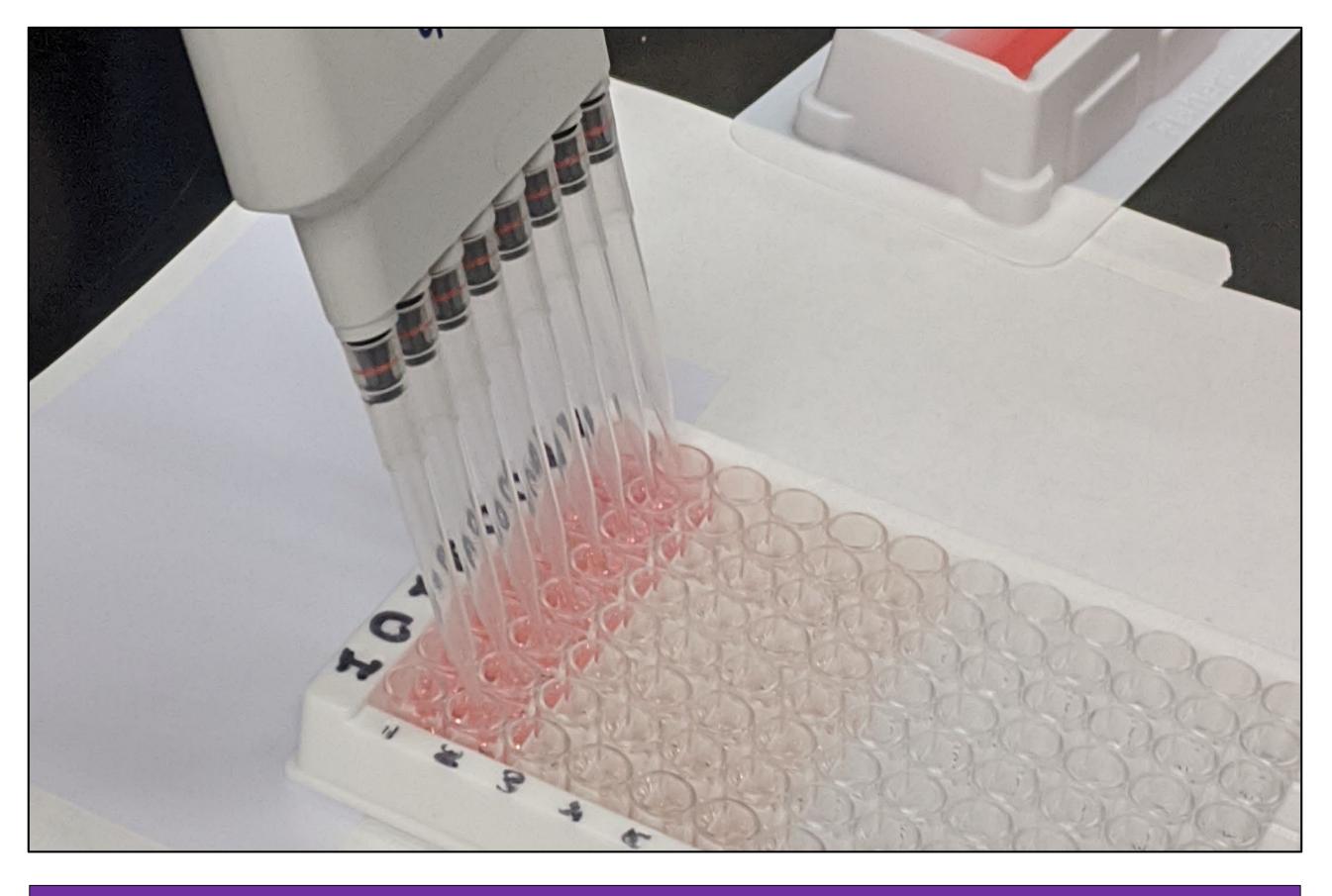
ei	nase	

- Data ► GLP-2 was detected in all samples Intra-assay variability was 3.1% in plate 1 and 2.56% in plate 2
- ▶ Inter-assay variability was 7.83%



- A Samples collected with proteinase inhibition
- B Samples collected without
- proteinase inhibition

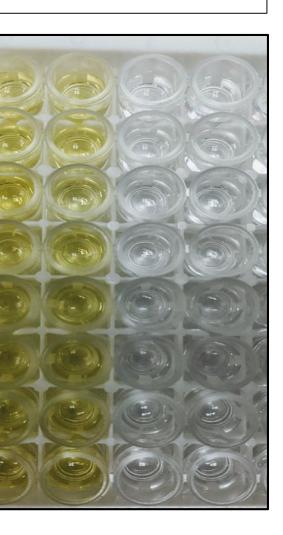
Figure 1. Individual cat GLP-2 concentrations in pre-prandial (top) and post-prandial (bottom) plasma samples from healthy cats.


Data

- \succ Mean pre-prandial concentration with proteinase inhibition 1.92 ng/ml (SD = 0.47) vs 1.93 ng/ml (SD = 0.48) without proteinase inhibition (p = 0.96)
- > Mean post-prandial concentration with proteinase inhibition was 1.97 ng/ml (SD = 0.58) vs 1.92 (SD = 0.55) without proteinase inhibition (p = 0.55).

Discussion and Conclusions

- >GLP-2 was successfully measured using a commercially available ELISA > Addition of the proteinase inhibitors Aprotinin and Diprotin A at the time of sample collection did not affect measured concentration
- \succ Additional studies are needed to determine whether results are due to differences in secretion or enzymatic GLP-2 degradation in cats compared to humans, other sample handling variables, or specificity of the ELISA to distinguish (1-33) vs (3-33) GLP-2
- \succ The next step of this research is to sequence feline GLP-2 using immunoprecipitation, compared sample concentrations of (1-33) and (3-33) GLP-2 using high performance liquid chromatography and perform GLP-2 ELISA quantification on samples after GLP-2 has been precipitated out, which may provide further insight on the results that were observed.



Acknowledgements

- Student support: Chet Peterson Family Scholarship and KSU CVM Office of Research Special thanks to the willing cat volunteers
- Special thanks to Dr. Thomas Schermerhorn and KSU DMP for laboratory space

References

- > Burrin DG, Stoll B, Guan X. Glucagon-like peptide 2 function in domestic animals. *Domest Anim Endocrin*. 2003;24:103-122.
- > Brubaker PL. Glucagon-like peptide 2 and the regulation of intestinal growth and function. *Comprehensive Physiology*. 2018;8:1185-1210.
- > Dube PE, Brubaker PL. Frontiers in glucagon-like peptide 2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab. 2007;293:E460-465.
- > Martin GR, Wallace LE, et al. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am J Physiol. 2005; 288 (3):G431-G438.

A - Samples collected with proteinase inhibition B - Samples collected without proteinase inhibition

