

Caffeine Safety

- New protocol
 - Bulk caffeine versus tablets
- Calculation error; 300 mg -> 30 g
 - Decimal place error (100x)
 - Calculated vaporously; not written or checked
- Medical emergency
 - Dialysis, loss of 22-26 lbs, students recovered
- Court: Lack of supervision inexperienced / incompetent
- University fined £400,000 (\$500,000) + expenses

Iniversit

NORTHUMBRI

Caffeine Safety

- If you were the student volunteer, how would you ensure that this would not happen to you?
- If you were the TA/lab coordinator (or classmate, professor/instructor, department head), how would you ensure that this type of error does not happen in the teaching program?

'The Accident'

- Preston Brown, fifth year graduate student, training newer student
- Working with ~5 g nickel hydrazine perchlorate (explosive) under hexane
- Used mortar & pestle to gently remove clumps
- Removed PPE & was working at bench
- One last stir mortar exploded
- Brown lost three digits on left hand, lacerated right hand & perforated left eye

Leading to 'The Accident'

- Labmates were disturbed by [Brown's] conduct in the lab prior to the incident. His space was **disorganized**, items were **not labeled**, and "there had been **conflicts** over work space, **cleanliness** of the lab and use of **chemicals**"
- Brown started scaling up syntheses [eight months before accident], first to 1 to 3 g and then to 5 g
- Colleague told Brown the scale-up was inappropriate;
 Brown reportedly responded that things were "just fine."
- Colleague apparently failed to report the scale-up to either Weeks (PI) or Hope-Weeks (Co-PI)

Leading to 'The Accident'

- Brown transported as much as "several grams of compounds" at a time in glass vials in a backpack or coat pocket
- Weeks (PI) told police that a student reported to him that Brown "would often avoid necessary steps to characterize compounds in order to save time"
- Several vials of material were at Brown's home, unlabeled
 - Destroyed by authorities
- Many laboratory vials were unlabeled
- Laboratory notebook provides no detail

How can silver just reave the structure? notebook Ag catalist entry

Lab

Contributing to The Accident

- Studying energetic or explosive compounds
 - 'Improvised' explosives
 - Nickel hydrazine perchlorate
- 'Make no more than 100 mg' synthesized 10 g
 - Policy not formalized or enforced in laboratory
- No records of syntheses and dispositions
- Wear PPE, practice safety inconsistent
- Insufficient safety accountability by PI, Department & University
- No formal training for students

Brandon Weeks

Louisa Hope-Weeks

Avoiding an Accident

- What is the role of each of these persons in promoting and ensuring safety in the laboratory?
 - New researcher (i.e., you)
 - Colleagues (other students, including grad students)
 - Laboratory manager
 - Primary investigator
 - Department head
 - Dean (Associate Dean for Research)
 - Vice President for Research
 - Others

Laboratory Safety - Reflection

- · Communicate with mentor and co-workers
- Complete all safety training
- Know your environment Risks, engineering controls
- Wear appropriate PPE & use safety devices
- Follow laboratory policies & SOPs
 - Know and practice protocols
- Expect colleagues to be safe
- Record aims, goals, preparations, calculations, activities outcomes and conclusions
- Laboratory notebooks are legal documents

Eye Protection Required

Records, Data Storage & Security

Making the Right Moves

A Practical Guide to Scientific Management for Postdocs and New Faculty

Chapter 8: Data Management and Laboratory Notebooks

Chapter 5: Laboratory Notebooks At the Bench A LABORATORY NAVIGATOR "...a marvelously crafted, enormously useful and entertaining guide for the laboratory neophyte ... a survival kit no bench worker should be without." 8 Kathy Barker COLD SPRING HARBOR LABORATORY PRESS

Excellent guides to survive flourish in the laboratory environment

Why Keep a Laboratory Notebook

- Provide a complete record of why experiments were initiated and how they were performed, outcomes, insights & conclusions (self)
- Encourage sound thinking. A forum to talk to yourself, to ask questions, to record important thoughts about experimental design & interpretation
- Provide information to persons interested in continuing your research. Others
 may want to repeat and extend your experimentation if you die an early death
 - Complete record of rationale, procedures, reagents, data, and thoughts to bequeath (others)
 - Notebooks that are kept solely for personal consumption are often illegible and incoherent (usually both) and are worthless to the broader scientific community
- To get rich! \$\$ You may discover or develop something important and in such an event you must have a notebook that supports your claims. If you have not kept up a proper laboratory notebook, other researchers and their patent lawyers will beat you to the Patent Office and to the bank.

modified from https://colinpurrington.com/tips/lab-notebooks/ & Dr Kurt Kwast (University of Illinois)

Why Keep a Laboratory Notebook

<u>Scientific</u>

- Reproducibility
- Publications
- Grant proposals

Legal

- Grants & Contracts
- Quality Assurance
- Product Approval
- Patents
 - Supporting data
 - -Dates
 - -Proof of practice

Essential Elements

<u>Useful Books Explain</u>

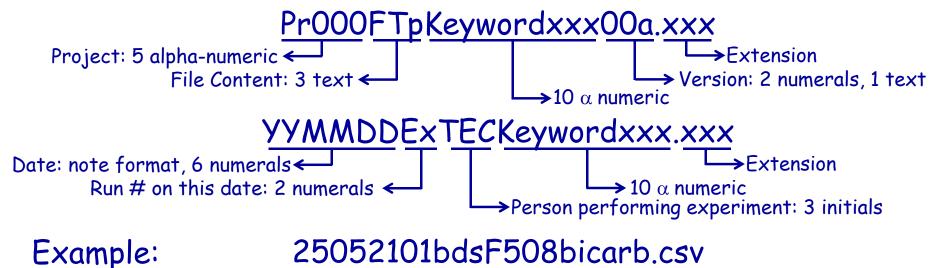
- What you did
- Why you did it
- How you did it
- When you did it
- Where materials are
- Outcomes with locations
- Your interpretations
- Contributions

Good Books are

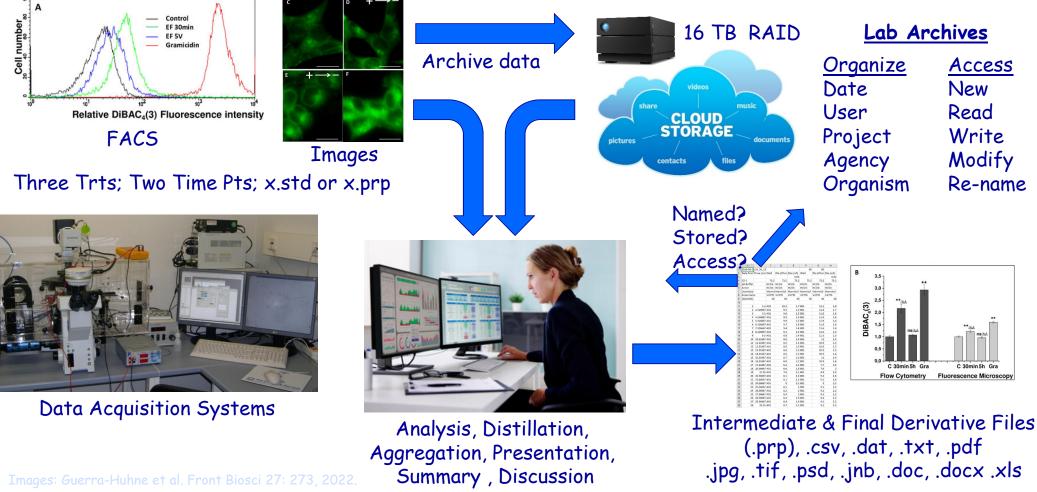
- Legible
- Organized
 Complete
- Accurate
- Accessible Secure
- Allow repetition of experiments
- Compliant with granting agencies AND institutional requirements

Information to Record

- Date (& experiment name or number)
- Purpose, hypothesis & goal
- How you did it? (approach & methods)
 - Sources of materials (vendor, lot #'s, etc.) & preparation
 - All calculations with units for all components (e.g., mass, volume, concentration)
 - Self-references to lab-made or proprietary reagents (notebook & page)
 - Organisms: type, line, passage, generation, age, last fed, etc.
 - Conditions: temperature, atmosphere, pH, osmolality, etc.
 - Can refer to centralized methods notebook with version number
 - Must include verification of timing, protocol steps, QA parameters, etc.
 - Collaborators who helped? Reference to their notes


modified from https://colinpurrington.com/tips/lab-notebooks/ & Dr Kurt Kwast (University of Illinois)

Information to Record


- Results (Data/observation/location of generated materials)
 - Tangible (photographs, radiographs, printouts, etc. pasted in or location)
 - Intangible (qualitative assessment, descriptions, calculations)
 - Electronic file names and storage location(s); Derivative files
- May allow space for comment when data are reviewed or distilled
- Discussion
 - Can be about any of the above topics (i.e., not just as conclusions)
- Conclusions/objective interpretation
 - Include any artifacts or errors made or observed
 - Reflect back to hypothesis and goal
- What's next (a.k.a. future directions)?
 - Next experiments / Optimizations / Modifications

Naming Electronic Files

- File must be accessible & stable
 - Software available to access, manipulate & analyze data
 - Naming must be interpretable by others who will access the information
 - Data archive file unchanged by accessing, copying or compressing
- Name must be unique, meaningful and logical (searchable)

Ownership & Access

- Grants:
 - Typically, the grantee 'institution' (e.g., university) owns all data, including laboratory notebooks
 - Primary investigator/Program director responsible for recording, organizing and securing data
 - Granting organization may require [open] access to data files and/or submission of information to repositories
 - Granting organization may require access to data, including notebooks, at will (e.g., audit)

Contracts

- Typically, contracting agency (e.g., corporation) owns all data, including laboratory notebooks
 - May affect opportunity to use data for future projects or for publication
- Primary investigator/Program director responsible for recording, organizing, securing and delivering data

Record-keeping - Reflection

- Laboratory notebooks are really important!
- What, Why, How, When, Where, Outcomes, Interpretations, Contributions
- Legible, Organized, Accessible, Accurate, Complete, Secure
- Include all calculations!
- Cataloging within a system is really important!
 - Develop effective expandable system to name and organize items
 - Access to reagents and products
 - Access to archival, intermediate and derivative files

