

EcoHealth Alliance

Drivers of Infectious Disease: Connections Matter

William B. Karesh, DVM

Executive Vice President for Health and Policy, EcoHealth Alliance President, OIE Working Group on Wildlife

Co-Chair, Wildlife Health Specialist Group, International Union for the Conservation of Nature

Local conservation. Global health.

Zoonoses

Zoonotic disease organisms include those that are endemic in human populations or enzootic in animal populations with frequent cross-species transmission to people...

...with endemic and enzootic zoonoses causing about a billion cases of illness in people and millions of deaths every year."

Zoonotic Viral sharing Green = Domestic Animals Purple = Wild Animals

Temporal patterns in EID events

- EID events have increased over time, correcting for reporter bias (GLM_{P,JID} F = 86.4, p < 0.001, d.f.=57)
- ~5 new EIDs each year
- ~3 new Zoonoses each year
- Zoonotic EIDs from wildlife reach highest proportion in recent decade

Spatial patterns in EID events

Total EID events • 1 • 2-3 • 4-5 • 6-7 • 8-11

Jones et al. 2008

EID Hotspots – Jones 2008 Nature Model

EID Hotspots – New Model with Land Use Change and Livestock

Relative risk of a new zoonotic EID

	relative influence (%)	std. dev.
population	27.99	2.99
mammal diversity	19.84	3.30
change: pop	13.54	1.54
change: pasture	11.71	1.30
urban extent	9.77	1.62
 		

Natural Versus Unnatural

"The emergence of zoonoses, both recent and historical, can be considered as a logical consequence of pathogen ecology and evolution, as microbes exploit new niches and adapt to new hosts...

Although underlying ecological principles that shape how these pathogens survive and change have remained similar, people have changed the environment in which these principles **operate.**"

Karesh, et al., The Lancet, Dec 1, 2012

Pasture Data

Source: Ramankutty and Foley, Department of Geography, McGill University

Description: Global historical pasture dataset, available at an annual timescale from 1700 to 2007 and at 0.5 degree resolution.

2000

Proportion of land devoted to pasture, 1900 vs 2000

Drivers of Disease Emergence in Humans

E. Loh et al. 2015. Vector-borne and Zoonotic Diseases 15(7)

Country-Level Drivers of Disease Emergence

Actionable information to target surveillance and prevention

Agricultural industry change n=27

Global Distribution of relative risk of EID events

- a) Zoonotic pathogens from wildlife
- c) Drug resistance pathogens

b) Zoonotic pathogens from domestic animalsd) Vector-borne pathogens

Jones et al. Nature 2008

Drivers of Foodborne EID events

Foodborne EID events 1940-2004 (n=100)

Karesh, et al, IOM Workshop Summary, 2012

A Day in a Food Market

Phylogenetic Distance to Humans Significant Predictor of the Number of Shared Viruses

Olival et al. In Prep

1,000,000,000 Kgs / Year (Central Africa)

BioGeography of Human Infectious Diseases

Based on similarity analysis of zoonotic human infectious disease assemblages at country level.

Global vulnerability index

- Calculating index
 - E_i = Jones et al. hotspots
 - C_{ij} = Est. Number of passengers
 - H_i = Healthcare spending per capita
 - i = source of risk
 - j = destination of risk

- We then interpolate risk out from airport locations globally
- Using Inverse Distance Weighted interpolation

EID risk per airport

Hosseini *et al.* (in review)

Our prediction of which countries were at risk for Ebola spread July 31st 2014

Red = earliest arrival; Green = last arrival. Grey = countries that can't be reached in 2 legs or less.

There are 10 countries that can be arrived at via direct flights, and 95 that can be reached by flights of two legs or less.

Climate Change and Emerging Diseases

Future Climate Change Scenario for the distribution of Nipah virus. Year 2050, optimistic scenario (B2). Red areas show new potential areas for virus spread.

Background on Leptospirosis

• Leptospirosis is a widespread zoonotic disease

- Can affect a wide variety of domestic animals and wildlife, as well as humans
- Caused by *Leptospira*, an anaerobic spirochete

IDEXX Data Overview

MAT Results

EcoHealth Alliance

Source: IDEXX Laboratories

Spatial Clusters: Percent of Tests Positive

Clusters of Positive PCR Results: Proportion of Positive Results to Total Tests Clusters of Positive MAT Results: Proportion of Positive Results to Total Tests

Dog Population Data

Human population data from US Census

- Used county-level human population census data to estimate population of dogs per county
- Assuming that within each state, dogs are distributed within the state similar to humans

Spatial Clusters: Positive Tests per Estimated County Dog Population

Clusters of Positive PCR Results: Positive Tests per Estimated Dogs Clusters of Positive MAT Results: Positive Tests per Estimated Dogs

Leptospirosis Vaccination

Number of Dogs Vaccinated per State 2010-2014

Four-Year Vaccination Numbers per Estimated Dog Population by State

Possible Importance of Rainfall

Determine how other factors could affect transmission and support the ability to predict an outbreak

Climatic Variables

Climate Data

- Mean Precipitation
- Mean Temperature
- Bioclimate Data
 - Represents annual trends, seasonality, and extreme factors (e.g., temperature in coldest month)

Income and Education Data

Distribution of Education Levels By County

Scatterplot of Income and Education

Percent Bachelors or Higher

Partial Dependence Plots: MAT Results

result – page 1

fitted function

EcoHealth Alliance

0.2

-0.2

deciduous_forest_2011 (10.7%19_precip_coldest_quarter_average

shrub_scrub_2011 (6.1%) developed_low_intensity_2011 (5.

precip_average (3.8%) 16_precip_wettest_quarter_average

median_income (3.2%) mixed_forest_2011 (3.1%)

Boosted Regression Tree Results

PCR Model: Top 5 Predictors

Variable	Relative Influence	Variable	Relative Influence
Evergreen Forest Cover	12.24919776	Deciduous Forest Cover	10.6624204
Shrub/Scrub Cover	9.887439268	Average Precipitation in	0.000005704
Grassland/		Coldest Quarter	8.622065784
Herbaceous Cover	7.161191081	Shrub/Scrub Cover	6.067515302
Developed Open Space Cover	6.195173737	Developed Low Intensity Cover	5.785643682
Median Income	5.81007611	Pasture/Hay Cover	4.897024777

MAT Model: Top 5 Predictors

Predictive Modeling Results by County

Inverse Logit Transformed Prediction by County: PCR Inverse Logit Transformed Prediction by County: MAT

Summary of Final Results: MAT

Inverse Logit Transformed Prediction by County: MAT

EcoHealth Alliance

Four-year Vaccination Numbers per Estimated Dog Population by State

Clusters of Positive MAT Tests Relative to the Estimated County Dog Population

EcoHealth Alliance

Drivers of Disease: Connections Matter

William B. Karesh, DVM

Executive Vice President for Health and Policy, EcoHealth Alliance President, OIE Working Group on Wildlife

Co-Chair, Wildlife Health Specialist Group, International Union for the Conservation of Nature

Local conservation. Global health.