Format Corrections Fundamentals of Veterinary Clinical Pathology Steven L. Stockham, Michael A. Scott Iowa State Press, Ames, IA, 2002

This listing: August 14, 2004 Previous listings: March 8, 2003

Pages 293 – 294: Error in outline levels

March 8, 2003

Version in 1st and 2nd printings from bottom of page 293 to middle of page 294

- D. Increased [UN] in serum or plasma (azotemia) (Table 8.2)
 - E. Decreased [UN] in serum or plasma (Table 8.4)
 - 1. Disorders that cause decreased urea synthesis
 - a. Hepatic insufficiency
 - (1) Extensive hepatocellular disease that results in marked reduction in functional hepatic mass (> 80% loss) and thus sufficient decrease in urea synthesis to cause a decreased [UN] and a corresponding increase in $[NH_4^+]$
 - (2) Portosystemic shunt (congenital or acquired)
 - (a) Less NH_4^+ is delivered to hepatocytes from the intestines.
 - (b) There is less uptake of NH₄⁺ by hepatocytes because of decreased functional hepatic mass due to atrophy, necrosis, or fibrosis.
 - b. Urea cycle enzyme deficiencies (congenital, extremely rare)
 - 2. Disorders that cause increased renal excretion of urea
 - a. When less H_2O is resorbed in the proximal tubules (e.g., due to glucosuria), less of the filtered urea is resorbed in the proximal tubules because the resorption of H_2O creates the concentration gradient for urea resorption.
 - b. In central and nephrogenic diabetes insipidus, reduced ADH activity or response in the medullary collecting tubules results in decreased resorption of both urea and H_2O .
 - 3. Consequence: The amount of urea in the renal interstitial fluid may diminish. Because about 50% of the medullary hypertonicity is normally due to urea, the urea deficit may contribute to a reduced concentration gradient, impaired renal concentrating ability, and thus polyuria.

Correction: reduction in one outline level for this section

III. Increased [UN] in serum or plasma (azotemia) (Table 8.2)

- IV. Decreased [UN] in serum or plasma (Table 8.4)
 - A. Disorders that cause decreased urea synthesis
 - 1. Hepatic insufficiency
 - a. Extensive hepatocellular disease that results in marked reduction in functional hepatic mass (> 80% loss) and thus sufficient decrease in urea synthesis to cause a decreased [UN] and a corresponding increase in $[NH_4^+]$
 - b. Portosystemic shunt (congenital or acquired)

- (1) Less NH_4^+ is delivered to hepatocytes from the intestines.
- (2) There is less uptake of NH_4^+ by hepatocytes because of decreased functional hepatic mass due to atrophy, necrosis, or fibrosis.
- Urea cycle enzyme deficiencies (congenital, extremely rare)
- B. Disorders that cause increased renal excretion of urea
 - 1. When less H_2O is resorbed in the proximal tubules (e.g., due to glucosuria), less of the filtered urea is resorbed in the proximal tubules because the resorption of H_2O creates the concentration gradient for urea resorption.
 - 2. In central and nephrogenic diabetes insipidus, reduced ADH activity or response in the medullary collecting tubules results in decreased resorption of both urea and H_2O .
- C. Consequence: The amount of urea in the renal interstitial fluid may diminish. Because about 50% of the medullary hypertonicity is normally due to urea, the urea deficit may contribute to a reduced concentration gradient, impaired renal concentrating ability, and thus polyuria.

Pages 512 – 513: Error in outline levels

2.

August 14, 2004

Version in 1^{st} , 2^{nd} , and 3^{rd} printings at top of page 513

- C. Defective absorption of cobalamin in ileum
 - 1. Diseases that damage ileal mucosa: inflammation, villous atrophy, cytotoxic drugs, resection
 - 2. Congenital deficiency of the receptor for the intrinsic factor/cobalamin complex in giant schnauzers;^{16,17} a similar disorder may occur in border collies.¹⁸
- D. Severe cobalamin deficiency in a cat with methylmalonic acidemia: Cause of the deficiency was not established but clinical evidence supported a congenital defect in cobalamin absorption.¹⁹

Corrected: increase one outline level for this section

- 2. Defective absorption of cobalamin in ileum
 - a. Diseases that damage ileal mucosa: inflammation, villous atrophy, cytotoxic drugs, resection
 - b. Congenital deficiency of the receptor for the intrinsic factor/cobalamin complex in giant schnauzers;^{16,17} a similar disorder may occur in border collies.¹⁸
- 3. Severe cobalamin deficiency in a cat with methylmalonic acidemia: Cause of the deficiency was not established but clinical evidence supported a congenital defect in cobalamin absorption.¹⁹