Fig. 11.1. Relationships of calcium kinetics and the production of PTH and 1,25-DHCC. (Note: Horse kidneys lack 10-hydroxylase and thus do not form 1,25-DHCC.)

- PTH production in parathyroid glands is stimulated by \downarrow [fCa²⁺] and \downarrow [1,25-DHCC] and inhibited by \uparrow [fCa²⁺] and \uparrow [1,25-DHCC].
- Conversion of 25-HCC to 1,25-DHCC in kidneys is catalyzed by 1α -hydroxylase. The activity of 1α -hydroxylase is promoted by \downarrow [fCa²⁺] and \uparrow PTH and inhibited by \uparrow [fCa²⁺] and \uparrow [PO₄].
- Ca^{2+} mobilization from bone and Ca^{2+} absorption in intestine are promoted by \uparrow [1,25-DHCC] and \uparrow PTH. Less Ca^{2+} mobilization and absorption occur if there is \downarrow [1,25-DHCC] or \downarrow PTH.
- Urinary excretion of Ca^{2+} is enhanced by \uparrow [f Ca^{2+}], and excretion is reduced by \downarrow [f Ca^{2+}], \uparrow PTH, and \uparrow 1,25-DHCC. Increased excretion of anions may obligate Ca²⁺ excretion and thus decreases in [fCa²⁺].
- During lactation, a large amount of Ca²⁺ is excreted via milk.
- Ca²⁺ is present in plasma in three forms: fCa²⁺, Ca²⁺ bound to proteins, and Ca²⁺ bound to small anions such as citrate and PO₄

+, positive effector or stimulates the process; -, negative effector or inhibits the process; Ca²⁺/Pr-, calcium bound to protein; and Ca²⁺/A-, calcium bound to nonprotein anions.

Fig. 11.2. Sequential events during the development of secondary renal hyperparathyroidism caused by chronic renal disease in dogs, cats, and cattle. Eventually, tCa²⁺, Pi, and 1,25-DHCC concentrations may be abnormal (see Fig. 11.3).

- Renal disease causes a loss of nephrons and a decrease in GFR, which causes less PO, to be filtered from plasma and a mild hyperphosphatemia develops.
- Damaged tubular epithelial cells may result in less endocytic resorption of 25-HCC and vitamin D-binding protein.
- Either because of the damaged tubular cells or inhibition of 1α -hydroxylase by increased [PO₄], there is less conversion of 25-HCC to 1,25-DHCC, and thus less vitamin D is available for Ca2+ metabolism.
- Decreased [1,25-DHCC] leads to \downarrow [fCa²⁺] and perhaps \downarrow [tCa²⁺] because of \downarrow intestinal Ca²⁺ absorption and \downarrow Ca²⁺ resorption from bone.
- Decreased [1,25-DHCC] also reduces the 1,25-DHCC inhibition of PTH synthesis, and thus PTH synthesis increases.
- Decreased [fCa²⁺] causes \uparrow PTH production, \downarrow calcitonin release, and $\uparrow 1\alpha$ -hydroxylase activity.
- Increased PTH promotes vitamin D-dependent Ca^{2+} absorption in intestine, stimulates Ca^{2+} and PO_4 resorption from bone, stimulates 1α -hydroxylase activity in kidneys, and inhibits renal PO4 resorption (promotes phosphaturia).
- Actions of increased PTH due to parathyroid hyperplasia tend to correct the hypocalcemia, hyperphosphatemia, and decreased [1,25-DHCC]. At this point, secondary renal hyperparathyroidism is present.

Fig. 11.3. Schematic pathogenesis of secondary renal hyperparathyroidism in dogs, cats, and cattle. Shaded areas represent reference intervals for GFR or each analyte concentration.

- Initial renal damage: The sequence of events described in Fig. 11.2 initially compensates for the decreased clearance of PO₄ and inadequate activation of vitamin D. A new homeostasis in Ca^{2+} and PO_4 balance is maintained by \uparrow PTH secretion.
- · Additional renal damage: As renal disease progresses and more nephrons are lost, pathophysiologic responses recur that stimulate more PTH synthesis in an attempt to maintain physiologic concentrations of fCa²⁺, PO₄, and 1,25-DHCC.
- Progressed to renal failure: Eventually, renal disease reduces GFR sufficiently for serum [Pi] to remain increased, and insufficient 1,25-DHCC and PTH are made to maintain [fCa²⁺]. The animal is presented with clinical signs of renal insufficiency or failure, azotemia, impaired ability to concentrate or dilute urine, mild hypocalcemia, and hyperphosphatemia. The $[tCa^{2+}]$ may not reflect the abnormal regulation of the $[tCa^{2+}]$ because of the Ca²⁺ that is bound to anions that are not excreted in renal failure.

Fig. 11.4. Conceptual illustration of the effects of plasma or serum pH on the [fCa²⁺]. The drawing illustrates the effect of the [H⁺] in plasma on the binding of Ca²⁺ to negatively charged proteins. A similar effect occurs with Mg²⁺.

- At a pH of 7.4, there are Ca^{2+} and H^+ ions bound to plasma or serum proteins and Ca^{2+} and H^+ ions that are free in the plasma or serum water. The free ions create the $[fCa^{2+}]$ and pH of the fluid. In this illustration, there are four protein-bound and four free Ca^{2+} ions.
- If sample handling, respiratory disorders, or metabolic disorders cause an \uparrow [H⁺], then more H⁺ and less Ca²⁺ bind to the proteins. The release of Ca²⁺ from the proteins increases the [fCa²⁺]. In this illustration with a pH of 7.3, the sample contains six free Ca²⁺ ions.
- If either sample handling, respiratory disorders, or metabolic disorders cause a \downarrow [H⁺], then less H⁺ and more Ca²⁺ bind to the proteins. The binding of Ca^{2+} to the proteins decreases the [fCa²⁺]. In this illustration with a pH of 7.5, the sample contains two free Ca^{2+} ions.
- Fig. 11.5. Conceptual relationships of total, free, and bound Ca^{2+} fractions in serum or plasma.
- **A.** Healthy animal: The $[tCa^{2+}]$ and $[fCa^{2+}]$ are within respective reference intervals.
- B. Hypoproteinemia (hypoalbuminemia): The hypocalcemia is caused by a decreased concentration of protein-bound Ca²⁺. The [fCa²⁺] (the regulated concentration) is within its reference interval.
- Primary hypoparathyroidism, hypovitaminosis D: The hypocalcemia is primarily caused by a decreased [fCa²⁺] because of either inadequate PTH or vitamin D activity. In this schematic example, the bound Ca^{2+} concentration is unchanged.
- D. Primary hyperparathyroidism, hypervitaminosis D, humoral hypercalcemia of malignancy, humoral hypercalcemia of benign disorders: The hypercalcemia is primarily caused by increased [fCa²⁺] because of increased activity of PTH, PTHrp, or vitamin D activity. In this schematic example, the bound-Ca²⁺ concentration is unchanged.
- HHM and concurrent hypoproteinemia: The [fCa²⁺] is increased because of the increased PTHrp activity, but the protein-bound Ca²⁺ concentration E. is decreased because of concurrent hypoproteinemia. The net result is a $[tCa^{2+}]$ within its reference interval.
- F. Chronic renal failure: The [fCa²⁺] is mildly decreased because of the inadequate formation of 1,25-DHCC. Concurrently, the concentration of Ca²⁺ bound to nonprotein anions (e.g., Ca^{2+} bound to citrate or PO_4) is increased. In this schematic example, the protein-bound Ca^{2+} concentration is unchanged and the net result is a mild hypocalcemia. The protein-bound Ca2+ concentration would be decreased with hypoalbuminemia caused by a protein-losing nephropathy.
- Lactic acidosis: The acidemia promotes Ca^{2+} detaching from proteins (thus, a decreased protein-bound $[Ca^{2+}]$). Some of the released Ca^{2+} binds to lactate to increase the Ca^{2+} bound to nonprotein anions. In this schematic example, the [t Ca^{2+}] is within its reference interval.
- H. Excess heparin in plasma: Collection of blood with an inappropriate amount of heparin (an anion) results in some of the fCa²⁺ binding to heparin and thus a decreased [fCa^{2+}]. The [tCa^{2+}] does not change. **Fig. 11.6.** Relationships of PO₄ kinetics and the production of PTH and 1,25-DHCC. (Note: Horse kidneys lack 1 α -hydroxylase and thus do not form
- 1,25-DHCC.)
- PTH production in parathyroid glands is stimulated by \downarrow [fCa²⁺] and \downarrow [1,25-DHCC] and inhibited by \uparrow [fCa²⁺] and \uparrow [1,25-DHCC].
- Conversion of 25-HCC to 1,25-DHCC in kidneys is catalyzed by 1α -hydroxylase. The activity of 1α -hydroxylase is promoted by \downarrow [fCa²⁺] and \uparrow PTH and inhibited by \uparrow [fCa²⁺] and \uparrow [PO₄].

- PO_4 mobilization from bone is promoted by \uparrow [1,25-DHCC] and \uparrow PTH. Less PO_4 mobilization occurs with \downarrow [1,25-DHCC] and \downarrow PTH. PO_4 absorption in intestine is promoted by \uparrow [1,25-DHCC] and \uparrow dietary PO_4 . Less PO_4 absorption occurs with \downarrow [1,25-DHCC] and \downarrow dietary PO₄.
- Urinary excretion of PO₄ is enhanced by ↑ PTH, and excretion is reduced by ↓ GFR, ↓ PTH, and ↑ GH activity.
 Insulin promotes the uptake of PO₄ by cells. However, cell damage will allow PO₄ to escape from the cells and enter plasma.
- During lactation, a large amount of PO₄ is excreted via milk.
- PO₄ present in plasma is mostly in two forms (HPO₄²⁻ and H₂PO₄⁻), but the measured phosphorus is reported in terms of inorganic phosphorus (Pi).
- In vitro hemolysis or delayed removal of serum or plasma allows PO₄ in erythrocytes to enter serum or plasma and thus cause an erroneous [PO₄].
- +, positive effector (stimulates the process); and -, negative effector (inhibits the process).