BASICS OF ELECTROCARDIOGRAMS

JEFFREY VOLZ, RVT Small Animal Intensive Care Unit Veterinary Health Center College of Veterinary Medicine Kansas State University

- RECOMMENDATIONS FOR MONITORING CIRCULATORY SYSTEM UNDER GA
- CARDIAC CONDUCTION SYSTEM
 - ELECTRICAL PATHWAY OF THE HEART
 - CARDIAC AXIS

ELECTROCARDIOGRAPHY (ECG) APPLICATION

- LEAD II PLACEMENT
- DECIPHERING THE ECG STRIP
- 8 QUESTIONS TO ASK WHEN INTERPRETING AN ECG STRIP
- IDENTIFICATION OF EKG ARRHYTHMIAS
 - CAUSES
 - TREATMENTS
- ARREST RHYTHMS
 - RECOVER GUIDELINES

American College of Veterinary Anesthesia and Analgesia

- A 'PRESENT' ANESTHETIST
- HEART RATE, RHYTHM AND QUALITY
- ASSESSMENT OF PERIPHERAL
 PERFUSION
 - PALPATION FOR PULSE QUALITY
 - MUCOUS MEMBRANE COLOR
 - CAPILLARY REFILL TIME

- MONITORING EQUIPMENT:
 - PULSE OXIMETRY
 - Electrocardiogram
 - BLOOD PRESSURE
 - NON-INVASIVE (INDIRECT)
 - INVASIVE (DIRECT)

HISTORY OF ELECTROCARDIOGRAPHY

THEN

- INVENTED IN 1903 BY WILLEM EINTHOVEN
- NOBEL PRIZE IN 1924
- "EINTHOVEN'S TRIANGLE"

NOW

- COMPACT ELECTRONIC DEVICES
- COMPUTERIZED INTERPRETATION OF ELECTROCARDIOGRAMS
- Standard of care in human and veterinary medicine

ELECTROCARDIOGRAMS (ECG/EKG)

- MEASURES THE ELECTRICAL ACTIVITY OF THE HEART MUSCLE, CREATING A WAVEFORM.
 - DOES NOT INDICATE MECHANICAL FUNCTION.
- Requires interpretation
- COMMUNICATES:
 - HEART RATE
 - RHYTHM

CARDIAC CONDUCTION SYSTEM

Einthoven's Triangle

- LEAD I: RA (-), LA (+)
- LEAD II: RA (-), LL (+)
- LEAD III: LA (-), LL (+)

<u>Right Side:</u>

- WHITE on the RIGHT
- SNOW over
 GRASS

Left Side:

SMOKE over
 FIRE

CARDIAC AXIS INTERPRETATION

- The <u>net direction</u> of electrical activity during depolarization.
 - In a healthy heart:
 - Movement is DOWNWARD and slightly to the LEFT.
- Examples of some common deviations:
 - LEFT ventricular hypertrophy
 - Axis is skewed further LEFT.
 - RIGHT ventricular hypertrophy
 - Deviation to the **RIGHT**.

- Depolarization **TOWARD** a lead will produce a **POSITIVE** deflection.
- Depolarization AWAY from a lead gives a **NEGATIVE** deflection.
- Equiphasic complex have roughly similar amounts of positive and negative deflections.

WHAT IS A LEAD?

- Difference in energy between two points creating a waveform.
 - Not to be confused with an electrical lead cable.
- Why is **lead ||** The PRIMARY LEAD USED UNDER GA?

Closest to the cardiac conduction system pathway.

ARTIFACTS

- 1. 60 cycle interference
 - Caused by an electrical interference.
 - Nearby electrical appliance.
- 2. Muscle tremors/movement
 - Due to skeletal tremors.
 - Irregular oscillations of the baseline.
 - Causes:
 - i.e. hypothermia, pain
- 3. Respiratory movement
 - Placement of electrodes on the bottom of patient's paws.

QUESTIONS TO ASK WHEN READING AN EKG

- 1. WHAT IS THE HEART RATE (HR)?
- 2. IS THERE A P FOR EVERY QRS COMPLEX?
- 3. IS THERE A QRS FOR EVERY P WAVE?
- 4. WHAT IS THE RHYTHM? (IRREGULAR OR REGULAR)
- 5. IS THE PR INTERVAL CONSISTENT?
- 6. WHAT IS THE QRS MORPHOLOGY?
- 7. ARE THE "T'S" TALL/TENTED?

DECIPHERING THE ECG: CALCULATING HEART RATE

RULE:

- 50mm/s: 10 big box=1s •
- 25mm/s: 5 big box=1s

Pen Technique:

- 25mm/s:pen=6s
- # of complexes x 10=~HR

7 complexes x 10=~70bpm HR

BRADYARRHYTHMIAS

- CHARACTERIZED BY A REGULAR OR IRREGULAR HEART RATE RHYTHM THAT IS CONSIDERED SLOWER FOR THAT SPECIES.
- THESE INCLUDE:
 - SINUS BRADYCARDIA
 - ATRIOVENTRICULAR BLOCK
 - 1ST DEGREE
 - 2ND DEGREE
 - MOBITZ TYPE I (BENIGN)
 - MOBITZ TYPE II (+/- CONCERNING)
 - ESCAPE BEAT RHYTHM

Factors that contribute to bradycardia:

- Cardiovascular disease
- High vagal tone
- Drug reduced secondary to Alpha-2 agonist administration
- Cushing's Reflex

VARIABLE RANGE WITH HEART RATES AMONG CATS AND DOGS.

- Cats:
 - ~160-200врм
- Dogs:
 - ~60-140врм
- Age, breed, size, Fear, anxiety, and stress (FAS)
- IMPORTANT TO OBTAIN A 'RESTING' HEART RATE BEFORE GENERAL ANESTHESIA!
- HOW MUCH DOES HEART RATE AND CARDIAC
 OUTPUT DROP UNDER ANESTHESIA?

SINUS BRADYCARDIA

- COMMON UNDER GENERAL ANESTHESIA
- AGE, SPECIES, BREED VARIABILITY
- <u>CAUSES:</u>
 - DRUG INDUCED:
 - OPIOIDS
 - ALPHA-2 AGONISTS
 - EXCESSIVE ANESTHETIC DEPTH
 - HYPOTHERMIA

- To Treat or Not to Treat?
 - Is there a risk to the patient's safety?
 - Hypotension
 - Anticholinergics
 - Atropine
 - Glycopyrrolate
 - Is the anesthetic depth too deep?
 - Lighten plane of anesthesia

• Reversal drugs?

- Naloxone
- Atipamazole
- *uncommonly indicated under GA, sometimes postoperatively (e.g., prolonged recovery)

CARDIAC CONDUCTION SYSTEM

1ST DEGREE AV BLOCK

• CHARACTERIZED BY:

- PROLONGED P-R INTERVAL
 - DELAY IN CONDUCTION OF THE AV NODE.
- USUALLY BRADYCARDIC

- Causes:
 - Increased vagal tone
 - Opioids
 - Alpha-2 agonists (e.g., Dexmed)

CARDIAC CONDUCTION SYSTEM

2ND DEGREE AV BLOCK

• MOBITZ TYPE I (BENIGN)

• MOBITZ TYPE II (CONCERNING)

- Slow
 - Type 1:
 - Longer P-R interval due to AV node cell fatigue
 - Type 2:
 - P-R interval constant with intermittent dropped beat.
- Often irregular HR
- Absent QRS following some P waves

- Causes:
 - High vagal tone
 - Opioids
 - Alpha-2 agonists
 - Electrolyte derangements
 - Hypothermia

CARDIAC CONDUCTION SYSTEM

3RD DEGREE AV BLOCK Srd Degree AV Block Lead II Lead II 25mm/sec 10mm/mV © Jason Winter 2016 - @ ECG Educator

• Characterized by:

- Complete dissociation between SA & AV node.
- Dogs: ~30-60bpm
- Cats: ~80-130bpm

- Causes:
 - Often unknown
- Treatment:
 - Atropine challenge
 - Refer for cardiac workup and/or pacemaker.

CARDIAC CONDUCTION SYSTEM

VENTRICULAR ESCAPE BEATS

Characterized by:

- Slow HR:
 - Cats: ~90-100bpm
 - Dogs: ~40-60bpm
- P waves not present for every QRS complex.
- Irregular rhythm
 - Long pause following normal dominant rhythm with odd QRS complex.

- Causes:
 - High vagal tone
 - Cardiac disease
 - Conduction system
- No treatment needed, but they should be noted in record.

CARDIAC CONDUCTION SYSTEM

VENTRICULAR PREMATURE BEATS (PVC/VPC)

Characterized by:

- Early or premature
 appearance
 - Wider than normal QRS
 complex with a T wave
- No P wave
- Irregular rhythm
- Pause following VPC

Causes:

- Increased sympathetic tone
 - Pain, stress, trauma
- Acid-base abnormalities
- Cardiac Disease
- Surgical emergencies
- Drugs

• Treatments:

- Drug administration
 - Pain
 - Stress

SINUS TACHYCARDIA

Causes:

- Pain
- Light anesthetic depth
- Anticholinergic
- Dissociative drugs
- Hypotension
- Hypoventilation

Negative side effects include:

- Increased myocardial oxygen
 consumption
- Decreased cardiac output
 - Results in reduction in stroke volume
 - Leads to hypotension and decreased perfusion.

• Treatment:

- Identify underlying cause
 - Drug administration:
 - Crystalloids, hypertonic saline, colloids, opioids, etc.

VENTRICULAR TACHYCARDIA (VTACH)

Characterized by:

- Ventricular rhythm HR of:
 - Cats: >220bpm
 - Dogs: >150-180bpm
- Rapid, repetitive contractions
 - Due to abnormal electrical impulses in the ventricles.

LIFE THREATENING ARRHYTHMIA!

- Pulseless Ventricular Tachycardia
- Ventricular Fibrillation

Ventricular Tachycardia (VT)

• Treatment:

- For sustained Vtach:
 - Lidocaine
 - Procainamide

ARREST RHYTHMS

Nonshockable Rhythms:

- Asystole
- PEA

Shockable Rhythms:

- Pulseless Vtach
- Vfib

• Treatment:

- Nonshockable Rhythms:
 - CPR
 - Epinephrine/vasopressin
- Shockable Rhythms:
 - CPR
 - Defibrillation
 - Lidocaine/Amiodarone

Recoverinitiative.org

WHAT IS THE RECOVER INITIATIVE?

- REASSESSMENT CAMPAIGN ON VETERINARY RESUSCITATION (RECOVER)
 - 3 GOALS:
 - GUIDELINES
 - EDUCATION
 - Research
- NON-PROFIT, VOLUNTEER BASED PROGRAM THROUGH ACVECC & VECCS.
 - DEDICATED TO PROVIDING STANDARDIZED GUIDELINES, HIGH-QUALITY EDUCATION, AND EVIDENCE BASED RESEARCH.

RECOVER Certified BLS & ALS Instructor

- Instructs and certifies veterinary professionals:
 - BLS and/or ALS Certified RESCUER

Reprinted with permission from the Veterinary Emergency & Critical Care Society (veccs.org) RECOVER Initiative CPR Algorithm.

- Cardiac axis can be determined by examining the examining the
- QRS axis is the most important!
 - Easiest to determine.
 - QRS=Ventricular Depolarization!
- "Normal" QRS axis:
 - -30 & +90
- Left axis deviation:
 - -30 & -90
- Right axis deviation:
 - +90 & +180
- Northwest axis or extreme deviation:
 - -/+180 & -90

Maybe....

This is actually not the most useful for 'basic' understanding and application of ECGs....consider removing axis discussion.

