Cardiovascular Consequences of General Anesthesia

Objectives

Review

- Side effects v. complications setting expectations
- Reported incidence of anesthetic-associated CV complications
- Review of basics of CV system
- Anesthetic monitoring using the ECG
- Arrythmias; classification, treatment criteria, interventions

Setting Perspectives

 Unconsciousness Depth assessment Knowledge of how drugs/circuits work
 Amnesia (loss of memory) Protocol selection Unclear ramifications in our species
 Protocol selection, adequate dosing intervals Knowledge of pain medications
 Akinesia (loss of movement) Depth assessment Knowledge of how drugs/circuits work
Cardiopulmonary, thermoregulatory, and autonomic stability Clinical observation/monitors Nursing practices/standards Balanced protocols

 Interventions (e.g., BP, rhythms, temperature etc.) And even though our goal is: Cardiopulmonary, thermoregulatory, and autonomic stability

> General anesthesia often produces: Cardiopulmonary depression Thermoregulatory dysregulation Autonomic dysregulation

Setting Perspectives

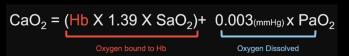
'Cardiopulmonary, thermoregulatory, and autonomic stability'

What is really meant:

Adequate oxygen delivery to tissues/organs during anesthetic event

Delivery of oxygen to tissues (DO2) = Cardiac output (L/min) x CaO2

Cardiac output (= HR x stroke volume)


Dependent on:

Cardiac output (CO; L/min)

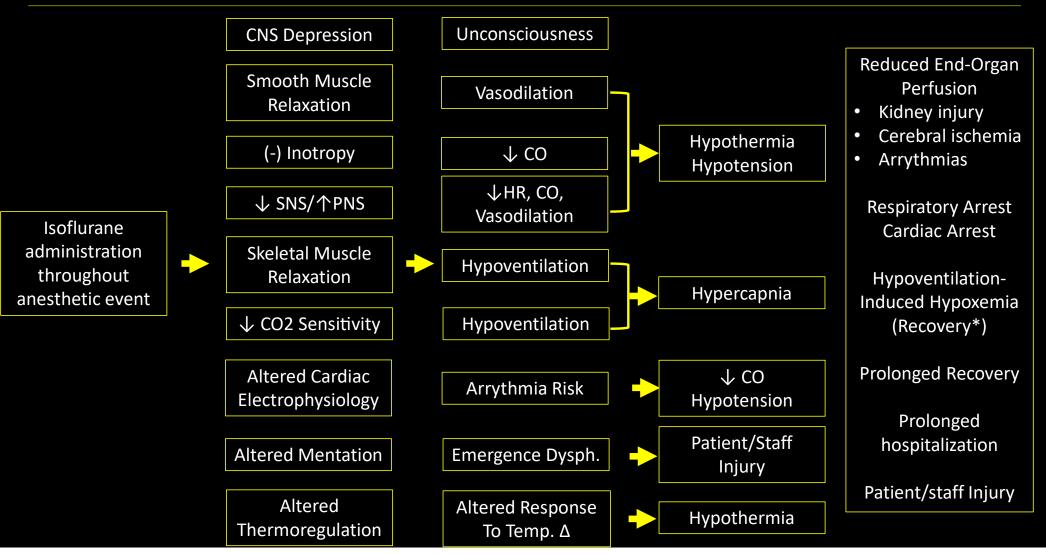
Vascular resistance (VR)

Blood pressure (BP)

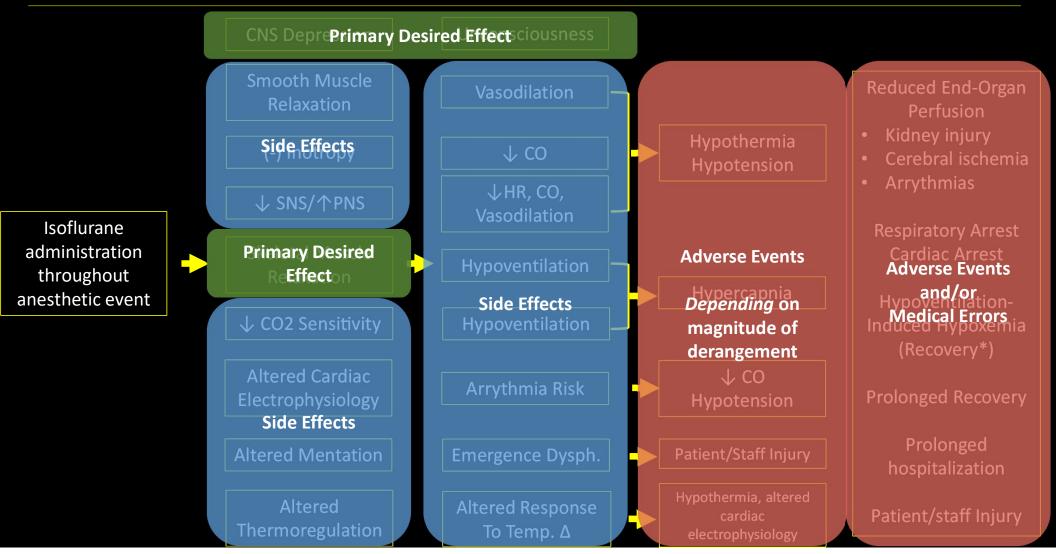
Oxygen carrying capacity (CaO2)

Side Note About Side Effects v. Complications

Side Note About Side Effects v. Complications


- **Side effect** effects other than those specifically desired during the use of a medication.
- Adverse event unintended and/or undesired effects secondary to the use of a medication or completion of a medical/surgical procedure producing a new or worsened morbidity, increased hospital stay, or mortality.
- Medical error (complication) preventable, undesirable effect of medical care, whether or not, it is evident or harmful to the patient.

Often known for drugs used


<u>Unmanaged</u> side effects may progress to adverse events

Unmanaged/mismanaged side effects or adverse events may progress to medical error (negligence) during patient management

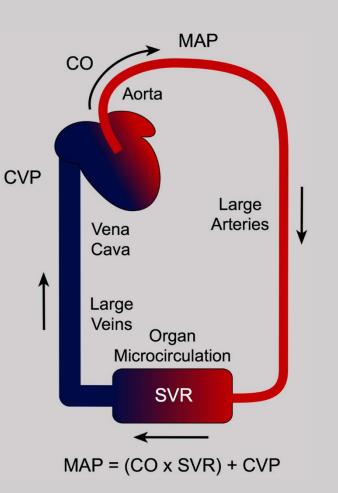
Setting Perspectives

Setting Perspectives

Reported incidence of anesthetic-associated CV complications

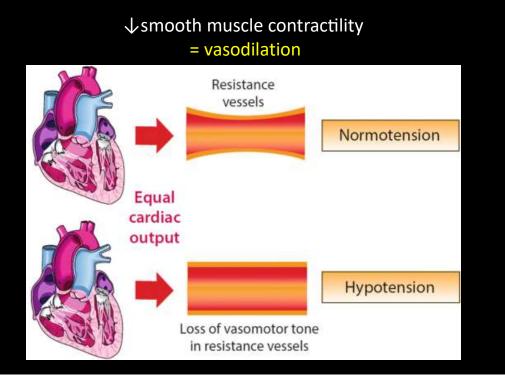
Reported Incidence of Cardiovascular Side Effects/Adverse Events

- Hypotension most common adverse effect reported (More next lecture)
 - Dogs 20-30%
 - Cats 25-35%
 - Mixed population up to 60%
- Arrythmias 6-10%
- Hemorrhage < 2%
- Hypothermia up to 40%+


Factors associated with anesthetic-related death in dogs and cats in primary care veterinary hospitals

Complications and Mortality Associated With Anesthesia in Dogs and Cats

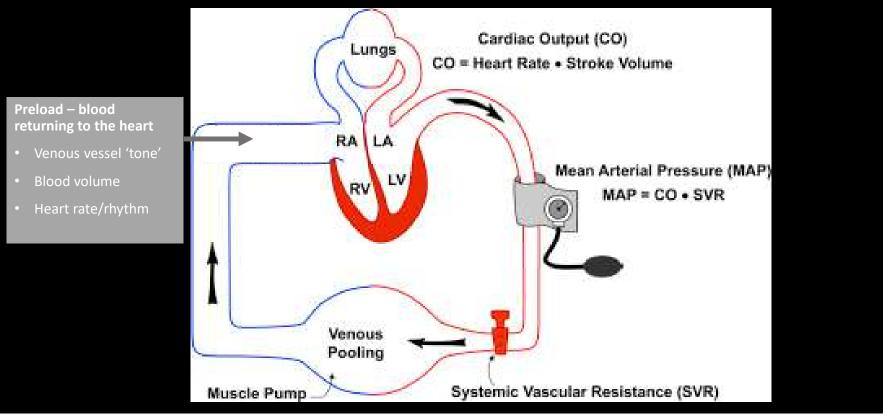
Basic CV System Review


Understanding where the blood is

Arterial system 10+% Capillary beds 5% Heart and Lungs 15+/-% Venous system 70+/-%

Why Hypotension? – Low Blood Pressure

When under general anesthesia (influence of isoflurane) $\sqrt{}$ muscle contractility

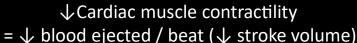


Why Hypotension? – Low Blood Pressure

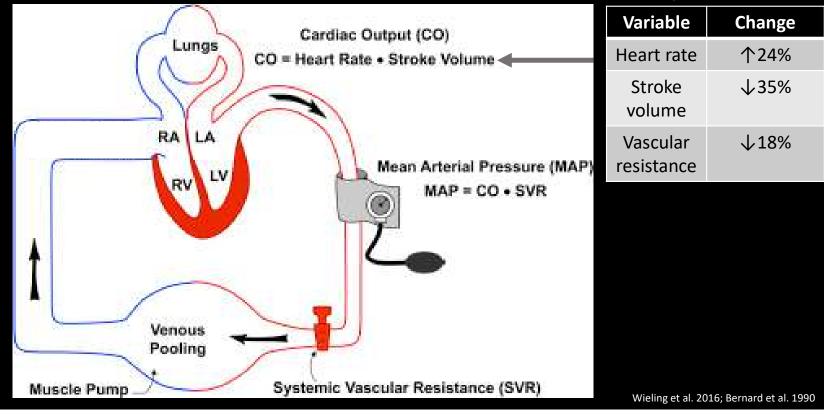
When under general anesthesia (influence of isoflurane)

\downarrow muscle contractility

- ↓smooth muscle contractility
- = vasodilation & reduced preload

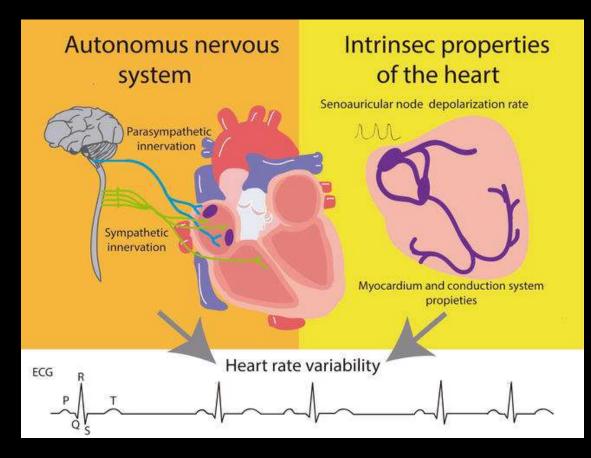


Wieling et al. 2016


Why Hypotension? – Low Blood Pressure

When under general anesthesia (influence of isoflurane)

\downarrow muscle contractility


At 1.5% isoflurane Compared to awake

Rhythm & Rate ... influence cardiac output at any given time

- Intrinsic cardiac automaticity
 - Sinoatrial node
 - Atrioventricular node
- Autonomic nervous system
 - parasympathetic
 - sympathetic

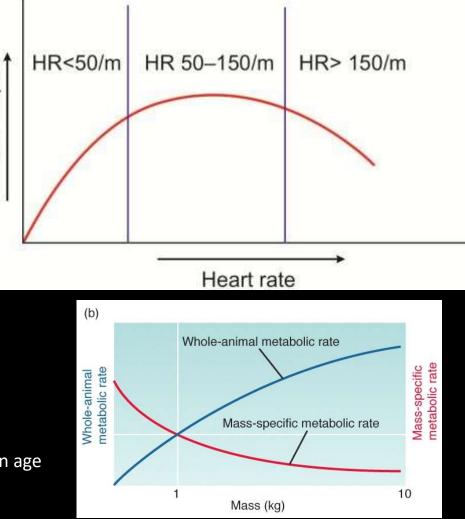
Produces some rate/rhythm

Pre-operative ECG in Practice

- ECG leads should be placed *before induction* of general anesthesia
 - Recommended to observe ECG before induction of general anesthesia, on all patients, <u>when possible</u>
 - Know patient was normal before
 - Rhythms can easily change from awake (sedated) to anesthetized
 - Did you anesthetize a dog that had clear abnormalities before induction?
 - Almost every drug we give alters:
 - Electrophysiology of the heart
 - Conduction of electrical signals through the heart
 - Influencing systems (e.g., PNS, ANS)
 - *ECG is only clear way to monitor this aspect of CV system

Relative Rate

Allometric scaling


• A normal HR for one dog, not the same for another

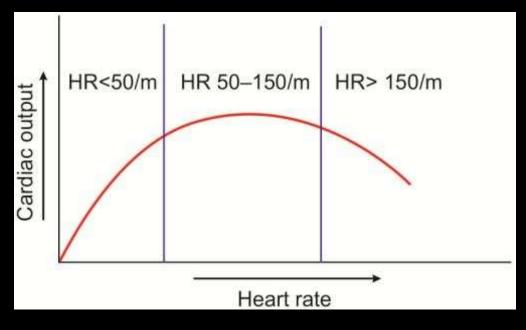
Cardiac output

- Larger dogs have a lower baseline functional HR
- Smaller dogs have a higher baseline functional HR

Pediatric = SNS still developing

- Unable to increase contractility or vascular resistance; *reliant on HR being normal/elevated*
- Not analog (e.g., development of 2 mo. > 1 mo. > 2 wk)
- Maintain HR in normal-to-tachycardic
- Consider premedicating with anticholinergic if < 1 mo. in age

Relative Rate


- Bradycardia definition:
- HR < 50-80 in the dog
 - Larger breed dogs: HR < 50-60
 - Smaller breed dogs: HR < 70-80
- HR < 110-120 in the cat

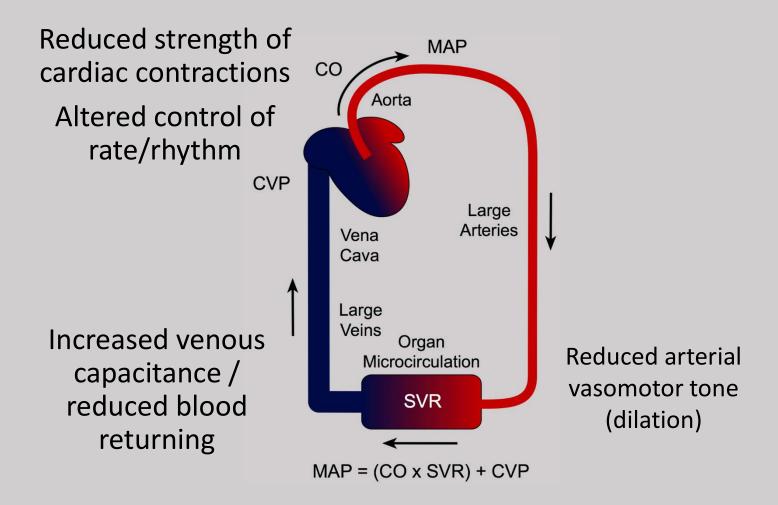
Bradycardia with 2nd degree AV-block common

Tachycardia definition:

- HR > 140-180 in the dog
 - Larger breed dogs: HR > 140
 - Smaller breed dogs: HR > 180
- HR > 200-220 in the cat

*smaller breeds tolerate higher HRs than larger breeds

Criteria for treatment of heart rate and/or dysrhythmias


Is the rhythm affecting cardiac output?

IF patient hypotensive; than likely yes Intervention is warranted

General anesthesia predisposes to bradycardias:

 \downarrow autonomic nervous system output Often drugs used which reduce rate (e.g., opioids, alpha-2 agonists)

Putting Things Together – Shifts Occur

Thermoregulatory Considerations

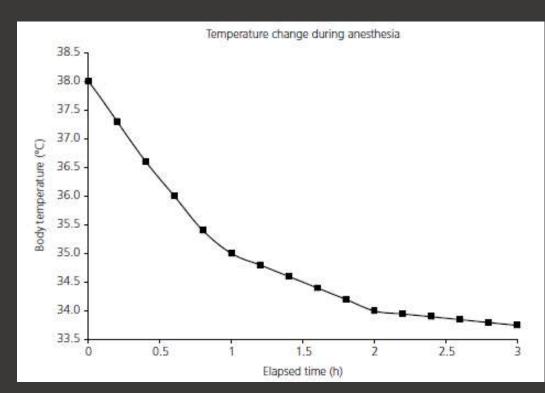
If no intervention occurred \rightarrow patients would settle at a little above room temperature

- Definition: < 97 F body temperature
 - Recently suggested , 96.7 F should be considered adverse event
- Peri anesthetic hypothermia (PAH) is common
 - Dogs 32-40%
 - Cats up to 71%

Remember... <u>Unmanaged</u> side effects may progress to adverse events

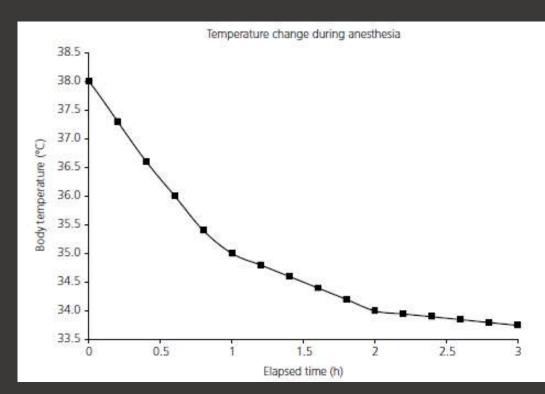
Thermoregulatory Considerations

- Why the high incidence?
 - High surface area-to-mass ratio \rightarrow predisposing to radiant heat loss
 - Lack of effective standardized care for mitigating for hypothermia
- Side-effects from uncontrolled hypothermia related to:
 - Duration of PAH
 - Magnitude of PAH derangement
 - Context of the patient; procedure, comorbidities

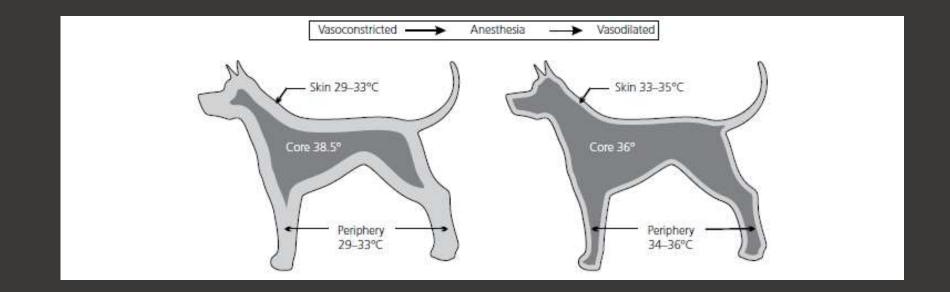

Thermoregulatory Considerations

- Implications of PAH well documented:
 - Relative anesthetic overdose
 - Every 1*C reduction is associated with approximately 5% reduction in anesthetic requirement
 - Increased solubility of anesthetic gases
 - Reduced metabolism of other, systemically, administered drugs
 - Prolonged recovery from anesthesia
 - Weak evidence for wound healing effects
 - Increased arrythmia risk
 - Impaired coagulation
 - Well documented (humans, in-vitro)
 - To-date, no effective investigation

Oesophageal temperature at end surgery (°C)	Number of cases	Mean ± SD time to righting (min)
35.0-35.4	4	23.4 ± 22.1
35.5-35.9	5	17.6 ± 14.8
36.0-36.4	12	14.9 ± 18.5
36.5-36.9	17	10.7 ± 3.9
37.0-37.4	15	9.9 ± 3.3
37.5-37.9	9	8.8±5.5
> 38.0	5	7.7 ± 3.8


Timeline of Heat Loss

- Phase I (redistribution)
 - Core drops by 1.5+ °C in 1st hour
 - MUCH shorter in small patients
 - Greater loss in small patients
 - Core-to-periphery gradient
 - Normally 2-4 °C
 - Gradient lost → heat transferred via convection (blood flow)
 - Heat from core lost to peripheral tissue
 - Vasodilation*
 - Responsible for majority of all heat loss, if unmitigated against



Timeline of Heat Loss

- Phase II (Linear)
 - Following 2-3+ hours
 - Environmental heat loss exceeding heat production (basal metabolism)
 - Conduction important in this phase Patients on cold surfaces/in cold rooms
- Phase III (Plateau)
 - Pseudo equilibrium with environment
 - Due to:
 - insulation/heat supplementation
 - severe hypothermia inducing vasoconstriction

Heat Loss

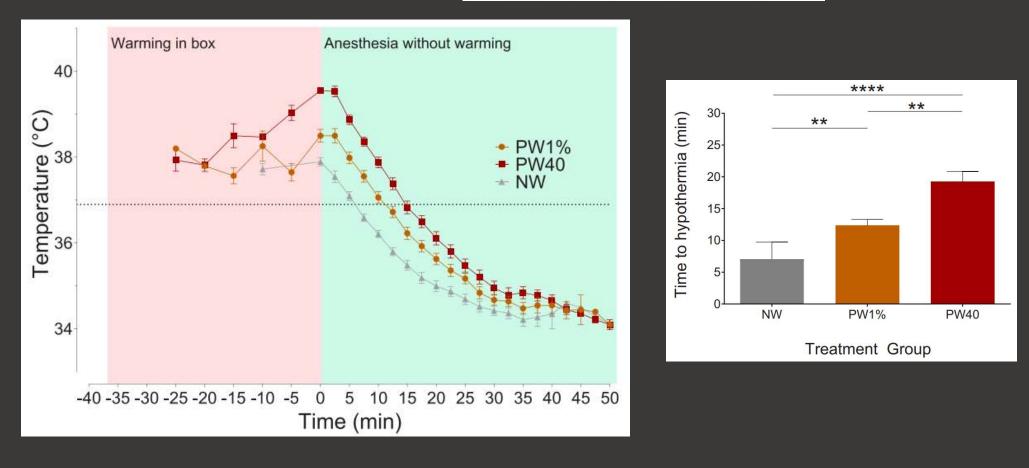
Thermal Support

- Always available from pre-sedation-to-recovery
- Forced air warmers, warm water blankets best (any patient < 10kg should have Bear Hugger/forced air warmer)
 - Warming packs appropriate but little efficacy
 - Microwaved fluid bags, rice packs *avoid if possible (heat concentrators)*

Heated rice bag during dental (Spring 2023)

wound management costing >\$12,000; 20 days

Thermal Support cont.


- Have warmed scrub, IVF, saline irrigation, etc. may mitigate severity of PAH acheived
- IV line warmers useless
- When not interacting with sedate/anesthetized patient
 - Towel over to reduce radiative heat loss
 - Never have patient directly on cold mat or metal table
- Consider
 - Warming ambient ward temperature
 - *Pre-warming* patient prior to general anesthesia

Questions?

Thermal Support

Pre-warming before general anesthesia with isoflurane delays the onset of hypothermia in rats

Maxime Rufiange^{1,2}, Vivian S. Y. Leung^{1,2}, Keith Simpson³, Daniel S. J. Pang^{1,2}*

