Orthopedic Infection: Diagnosis, Treatment, and Recent Literature Haileigh Avellar, DVM, MS, DACVS-LA KSU CVM Annual Conference June 5, 2023 3 Methods of Joint/Synovial Infection Hematogenous -Mostly foals, rare in adults synovial infection is secondary -Gram negative > gram positive bacteria Percutaneous -Trauma, arthrocentesis -Gram positive > gram negative bacteria Adjacent Invasion -From physis, other bone infection, cellulitis, subarticular abscess **Diagnosing Orthopedic Infection** History -Foals Failure of passive transfer Pneumonia Umbilical abnormalities (infection) -Adults Recent wound Open fracture Recent orthopedic procedure Physical exam –Lameness (grade 4+) -Swelling, heat, effusion -Wounds or draining tracts Sometimes small wounds are worse -Fever not always reliable in adults 8 Diagnosing Orthopedic Infection • Arthrocentesis + cytology

-TNCC > 10,000/uL

- -TP > 3.0-3.5 g/dL
- -90% degenerative neutrophils (PMNs)
- -+/- intracellular bacteria

_

- -Sterile skin preparation and needle placement
- -18 gauge needle
- -Sterile EDTA tube (purple)

_

9 Diagnosing Orthopedic Infection

- Culture (& sensitivity)
 - -Synovial Fluid
 - Positive → yes there is an infection
 - Negative → still might be an infection (50/50 for positive culture results)
 - Place in blood culture tube (or red top tube)
 - -Blood (foals)
 - ·Can be helpful but can have multiple bacteria
 - Taken under sterile conditions while placing IVC
 - Best taken prior to antimicrobial treatment
 - -Bone or tissue
 - · Can be helpful in osteomyelitis cases
 - Decreased positive cultures if antibiotics have been started but should still submit

•

10 Diagnosing Orthopedic Infection

- Bloodwork
 - CBC not always reliable in adults, should always be done in foals with risk of systemic sepsis
 - -Fibrinogen >900 indicative of osteomyelitis

•

11 Diagnosing Orthopedic Infection

- Imaging
 - -Ultrasound

- Effusion with flocculent material
- Swollen synovium
- Abscess, other soft tissue infection
- Guide sampling
- Radiographs (examples next slides)
 - · Effusion, osteolysis, osteoarthritis
 - Limitations
 - -Several days to detect boney changes
 - Ossification centers in foals are irregular, subtle changes are hard to detect
 - Good to get baseline rads to compare to future rads if treatment doesn't go as planned
 - -Progression of OA, lysis, collapse of joint space
- –CT (examples next slides)
 - Great when radiographs aren't clear-cut, upper limb/pelvis
 - More detail

17 General Guidelines for Treatment

- Lavage
- Debride
- Antimicrobials
- Anti-inflammatories
- Usually need <u>multiple modalities of treatment</u>
- Aggressive early treatment essential
- · Kill bacteria at presentation
- Resolve inflammation following resolution of infection

18 Lavage: Arthroscopy

- -Pro
 - Higher volume fluids
 - Assess joint surface
 - Visualize debridement
 - •Removal of fibrin, foreign

bodies

- -Con
 - Requires anesthesia
 - Large open wounds→ inability to extend joint, decreased visualization
- Not required in every septic joint but good option if suspicious of foreign material

20 Needle Lavage Supply List

- Clippers (if associated with wound)
- Sterile scrub
- 14-18 gauge needles (2-3/joint)
- Syringes
 - -3ml: collect joint fluid for testing
 - -12-20ml: confirm communication
 - -3ml: post lavage antibiotic
- Sterile fluids (isotonic, 1L/joint)
- 10 drop set
- Pressure bag or high volume fluid pump
- Post lavage antibiotic (amikacin most common)

24 Arthrotomy/Thecotomy

- Provides continuous drainage
- Option for synovial structures with high volume fibrin
- Must have sterile bandage
 - -Difficult in stifle/upper limb

25 Debridement

- Debridement of dead surfaces is essential
 - -Biofilm formation
 - Must be removed for resolution of infection
 - -Removal of sequestrum
 - "clean out" involucrum
 - -Removal of necrotic tendons, ligaments, skin
 - -Must be careful in foals
 - Must preserve growth and articular cartilage

 Not always necessary 27 **Antimicrobials** Methods of administration -Systemic (IV, IM, PO) -Local Intra-articular/synovial Regional -Bone -Artery or vein Repository (beads) **Systemic Antimicrobial Application** 29 · Appropriate application of antimicrobials essential for elimination of infection -Use correct drugs -Administer correctly Initial treatment –IV and broad spectrum Bactericidal Standard protocols –Adults: penicillin, gentamicin -Foals: penicillin & amikacin Or Penicillin & Gentamicin (12mg/kg, q36h) Current KSU combo due to backordered amikacin **Systemic Antimicrobial Application** Oral antibiotics (only after improvement) -Chosen based on culture/sensitivity results -Trimethoprim/Sulfa -Chloramphenicol (if bone penetration is needed) -Tetracyclines: Doxycycline or Minocycline (not in foals) Duration of antibiotics?

- -IV: at least 5 days, depends on clinical signs
- -Switch to oral for 14 days after IV
- -Total duration 3+ weeks
- Avoid compounding drugs
 - -Unreliable concentrations
 - Now need a medication justification for the use of compounded medications

31 Local Injection

Intra-articular/Intra-synovial

- · Directly into joint or tendon sheath
- · Repeat daily or every other day
- Concentration dependent
- Bactericidal
- Amikacin most common
 - -Dose?
 - •125-500mg
 - New study 30mg
 - -Pezzanite (CSU), ACVS Abstract

32 Regional Perfusion- IO

- Achieves higher drug concentrations in tissues than possible with systemic administration
- Intra-osseous (IO)
 - –Hole drilled distal to site of sepsis
 - Drill or 14G needle (works well in foals)
 - -1:9 antibiotic dilution

33 Regional Perfusion

- Intra-venous
 - Achieved high concentrations of drug in synovial structures and surrounding tissue
 - Reduced drug expense and toxicity
 - Good when there is significant soft tissue trauma
 - -Tourniquet placed proximal to site of infection
 - -Small butterfly catheter (23G)
 - -500 mg-1 gram amikacin QS to 35-60ml (depending on location and foal vs. adult)

- -20-30 minutes for diffusion
- -Every other day or until satisfied infection is eliminated
- -Standing or under anesthesia during surgical procedure
- -Avoid arteries due to risk of thrombosis or phlebitis

Antibiotic Beads

- Temporary high concentrations of antibiotic at local site
- Fill dead space
- Materials
 - –Polymethyl methacrylate (PMMA)
 - -Plaster of Paris (POP)
 - -Biodegradable matrix or collagen
 - Expensive \$\$\$\$

36 Antibiotic Beads

- Do NOT use >1 antibiotic
 - -Decreased elution of both drugs
- Time dependent theoretically are best
 - Usually heat sensitive, PMMA creates exothermic reaction possibly inactivating beta-lactams
- Used prophylactically or therapeutically
 - -Place along implant on in debrided area
 - -Best if tissue can be closed
- PMMA can be made table side
- Pre-made with gas sterilization (POP or PMMA)

39 Anti-inflammatories

- Limit inflammation → limit destruction
- •
- Medications
 - -NSAIDs
 - Systemic
 - -Phenylbuazone
 - -Flunixin Meglumine
 - -Firocoxib (usually not enough)

. . .

- •Local/Topical
 - -Diclofenac
- Coaptation
 - -Compression bandage
 - -Sweat bandage