

HONEY BEE PROCEEDINGS

June 5-7, 2022

2022ANNUAL CONFERENCE

College of Veterinary Medicine Kansas State University

This proceedings is for the conference participants use only. Not for library or institutional use. Not to be copied or distributed.

Conference Contact Information:

Kansas State University College of Veterinary Medicine Office of Continuing Education and Events 213 Trotter, 1710 Denison Manhattan, KS 66506 785.532.4528 vmce@vet.k-state.edu

HONEY BEE PROCEEDINGS

June 5-7, 2022

Honey Bee Basics

Kristen Clark, DVM, MPH, DACVPM

HONEY BEE MEDICINE

KRISTEN CLARK, DVM, MPH, DACVPM, & HOBBYIST BEEKEEPER

OUTLINE

- Why Honey Bees Matter
- Veterinarians and Honey Bees
- Bee Basics
- Honey Bee Diseases & Conditions
- Resources for Veterinarians

WHY HONEY BEES MATTER

U.S. HONEY BEE INDUSTRY

- 2019 U.S. honey production was 157 million pounds valued at over \$339 million (USDA National Ag. Statistics Service)
- Beeswax is second most important hive product economically
 - Candles, leather, wood polishes, cosmetics, pharmaceuticals

U.S. HONEY BEE INDUSTRY

- Most important contribution of honey bees to agriculture? Pollination!
 - Contribute \$15 billion to U.S. crop production
- Many crops wouldn't exist without the honey bee at bloom time
 - Almonds (100% dependent)
 - Blueberries and cherries (90% dependent)
- Also important for apples, cranberries, melons, broccoli, and more!

Project Apis m.

U.C. Davis Department of Entomology & Nematology

POLLINATOR PROBLEMS

- Both wild and managed pollinator populations are declining
- Habitat loss and degradation
- Non-native species and diseases
- Pesticides
- Climate Change

VETERINARIANS AND HONEY BEES

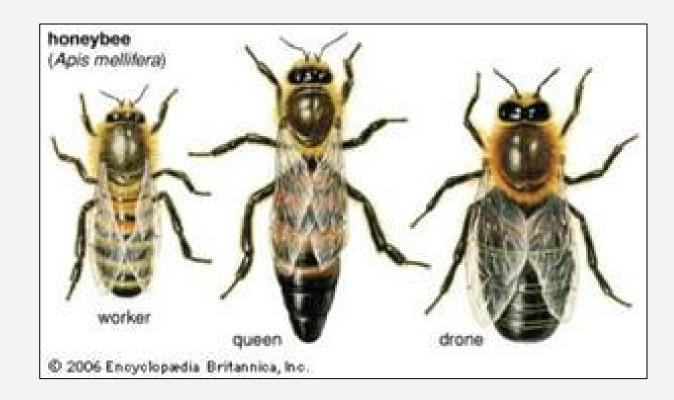
THE VETERINARY FEED DIRECTIVE (VFD)

- January 1,2017
- Food and Drug Administration
- Antimicrobial resistance
 - Serious threat to One Health
 - CDC annual estimates (United States):
 - At least 2.8 million human illnesses
 - 35,000 deaths
- As of January 1, 2017, all water-soluble, medically important antimicrobials administered to food producing animals in drinking water require a veterinary prescription, and all medically important antimicrobials administered to food producing animals through feed require a VFD.

I'M A VETERINARIAN. WHY SHOULD BEES MATTER TO ME?

- Honey bees are considered food producing animals (minor species)
- VFD final rule requires veterinarians to issue all VFDs within context of valid veterinarian-client-patient-relationship (VCPR)
- Beekeepers required to obtain VFD from licensed veterinarian for use of medically important antimicrobials in bees
- Veterinarians will be asked to visit apiaries, examine hives for signs of disease, and prescribe appropriate treatments
- In collaboration with state apiarists and extension specialists, veterinarians also have an opportunity to provide education and professional services to beekeepers on biosecurity, disease recognition and management, and more

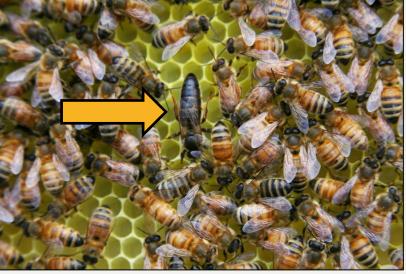
BEE BASICS


EQUIPMENT AND TERMINOLOGY

- Apiary
- Hive or colony
 - Langstroth hive most common
- Brood box or "deep"
- "Super"
- Frame
- Foundation
- Smoker
- Hive tool
- Beekeeper protection

TYPES OF BEES

- Within the colony, there are three types of bees based on function:
 - Worker
 - Queen
 - Drone


WORKER

- Female bees that perform the vital work of the colony •
- Variety of functions:
 - Providing for the queen's needs
 - Cleaning cells in the comb
 - Nursing larvae
 - Producing wax and forming it into honey comb
 - Guarding and defending the hive
 - Removing dead bees from the hive
 - Cooling the hive or heating the brood
 - Carrying water
 - Gathering and transporting pollen
 - Collecting nectar
 - Sealing (capping) honey
 - Scouting for resources

- Incapable of laying fertilized eggs that can become queens or other worker bees ٠
- Only capable of laying unfertilized eggs that become drones but this is suppressed in the presence of a laying queen ٠
- Lifespan varies with time of year: 5-6 weeks during the spring and summer, five months or longer during the inactive winter period

QUEEN

• Each colony generally contains one queen

Wikimedia Commons

- Fertile female of the hive and the sole source of fertilized eggs that become worker bees
 - Can lay up to 2,000 eggs per day during peak production
- Largest bee in the hive with long, tapered abdomen
- Colony will only produce new queens when it prepares to reproductively split by swarming, when the old queen has died, or to replace a failing queen
 - Many queen cells will be created → First one to emerge will kill the remainder and fight with other emerged queens so that only one remains
 - One to two weeks after hatching, virgin queen will go on several mating flights where she will mate with 10-20 drones, storing the sperm for use over her lifetime.
- Colony can only function normally when a queen is present and laying well

DRONE

Dr. David Schmitt

Wikimedia Commons

- Only male bees in the hive and are haploid (having only one chromosome set) because they arise from unfertilized eggs
 - Queens and workers are diploid because they arise from fertilized eggs
- Large, thick bodies
- Perform no functions inside the hive—sole duty is to search for and mate with virgin queen bees on their mating flights
 - If fortunate enough to mate, endophallus is removed in the process and the drone dies
- Drones are made whenever the colony has sufficient resources
 - Can have hundreds of drones in summer but are kicked out of colony before winter so they don't consume precious resources

BROOD

- Young, developing bees
 - Eggs
 - Larvae
 - Pupae

Wikimedia Commons

Wikimedia Commons

- Eggs laid in cells in colony → after 3 days, egg hatches, and a larva emerges → larvae are fed and grow over the next 6 days → cell containing the larva is capped (open top sealed over by worker bees with porous wax) → larva then matures to a pupa inside the capped cell (*capped brood*) → eventually emerges from the cell as a bee
- Total days spent as brood:
 - 16 for queens
 - 21 for workers
 - 24 for drones

Kris Fricke https://creativecommons.org/licenses/by-nc-nd/2.0/

Wikimedia Commons

 Colony will contain brood most of the year but egg laying ceases in late fall or early winter and in times of stress

DIET

Wikimedia Commons

- Entirely from flowers!
- Floral nectar = carbohydrates
- Prefer fresh nectar when available, but store it in cells for when there are no available flowers
 - To prevent nectar fermentation, bees dry the nectar to below 18% water content = HONEY
- Pollen provides source of protein, vitamins, fats, and minerals
 - To store pollen, bees pack it into cells, add nectar, and ferment into storable substance called bee bread

HEALTHY HIVE

- Queen is laying enough eggs
- Workers can raise enough brood to replace the workers that are dying
- There are enough members of each age of worker to perform all the necessary tasks of the colony

Max Pixel

HONEY BEE PROCEEDINGS

June 5-7, 2022

Honey Bee Maladies and How Veterinarians Can Help

Kristen Clark, DVM, MPH, DACVPM

DISEASES AND GONDITIONS

BEE DISEASES

- Bacterial
 - American foulbrood (AFB)
 - European foulbrood (EFB)
- Viral
 - Paralytic viruses
 - Sacbrood
- Microsporidial
 - Nosema
- Fungal
 - Chalkbrood
- Parasitic
 - Parasitic Mite Syndrome (PMS)
 - Tracheal mites
 - Small hive beetles
- Other
 - Idiopathic Brood Disease (IBD)
 - Malnutrition
 - Pesticide toxicity

Wikimedia Commons

BEE DISEASES

- Only two diseases (AFB and EFB) are commonly treated with antibiotics
- Other diseases can appear similar to AFB and EFB
- Colonies can be infected with multiple diseases at the same time

BACTERIAL DISEASES: AMERICAN & EUROPEAN FOULBROOD

- Two significant honey bee diseases
- May require veterinary intervention as both may be treated with antibiotics
- Both have worldwide distribution
- Name originated due to foul smell arising from decay of infected brood but AFB and EFB are not closely related

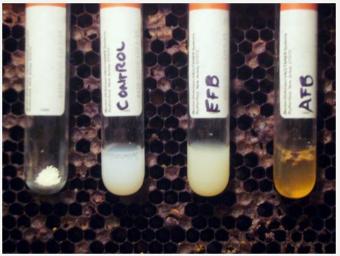
AMERICAN FOULBROOD (AFB)

- Cause by Paenibacillus larvae, a spore-forming bacteria
- Usually only affects pre-pupal and pupal stages of development
- Infective, vegetative state of bacterium is susceptible to antibiotics
- Spores
 - Not affected by antibiotics
 - Resistant to temperature changes and chemicals
 - Can persist in honey and the environment for up to 70 years
- REPORTABLE DISEASE IN SOME STATES

AFB VISUAL INSPECTION FINDINGS

- Foul odor—often compared to dirty gym socks
 - Can often be smelled from a few feet away
- Shotgun brood pattern
 - Indicative of any disease affecting brood—not pathognomonic for AFB
 - Indicates that brood are dying before they are capped
- Perforated caps
 - Sunken and discolored
 - Perforations with irregular edges
- Pupal tongues
 - Kills bees at specific developmental stage
 - May die with developing proboscis exposed = 'pupal tongue'
 - Characteristic of AFB but not always present
- Larval scale
 - Bottom of cell and difficult to remove

Wikimedia Commons

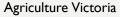

The Management Agency, National AFB Pest Management Plan, New Zealand

AFB DIAGNOSIS: FIELD TESTS

- Matchstick/rope test
 - Positive test is characteristic of AFB, negative test doesn't rule it out (larvae must be in appropriate stage of decay)
 - Insert matchstick, toothpick, or similar object into cell with discolored/oozing cap and slowly pull it out
 - Decaying products in cell will form viscous string that will rope out $\geq\!\!2\,cm$
- Holst milk test
 - Positive test suggestive of AFB, negative test doesn't rule it out
 - Need two test tubes of highly diluted milk
 - Add infected larvae or content from rope test to one tube (other tube serves as control) → incubate both tubes in pocket or warm cup of water for 10-20 min, occasionally shaking both tubes → if milk changes to transparent, brownish fluid, this suggests AFB
- Field ELISA Test
 - Manufactured by Vita Europe, available from most U.S. bee supply companies

Ipswich & West Moreton Beekeepers Association

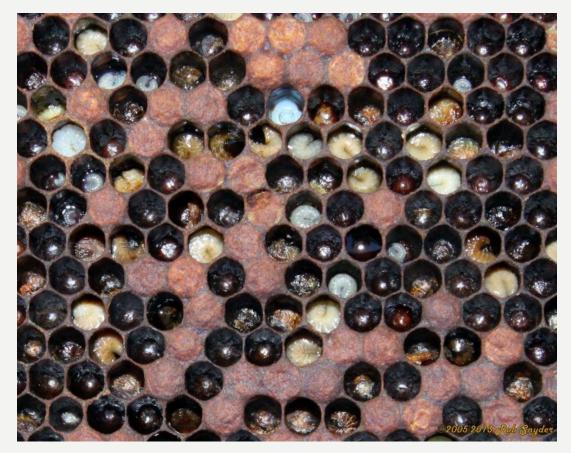
Randy Oliver, ScientificBeekeeping.com


AFB DIAGNOSIS: LABORATORY TESTING

- Send brood samples to USDA Agricultural Research Service (ARS) laboratory in Beltsville, MD
- See USDA-ARS Bee Research Laboratory website for more details on specimen submission
 - <u>https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-agricultural-research-center/bee-research-laboratory/</u>

AFB TREATMENT

- Many states require that colonies diagnosed with AFB be immediately destroyed
 - Always follow state regulations
 - Burning most common method
 - Recommended even if not required by state due to persistence of spores
- Three types of antibiotics are FDA-approved to control AFB
 - Oxytetracycline (resistant strains exist)
 - Tylosin
 - Lincomycin


- Antibiotics not effective against spores—used for mild infections or to prevent infection from worsening or spreading
 - Treatment should occur even if only a single infected cell is detected
 - Still burn frames with infected brood \rightarrow sterilize boxes and move bees to clean/new equipment \rightarrow treat colony and all other colonies in that bee yard

EUROPEAN FOULBROOD (EFB)

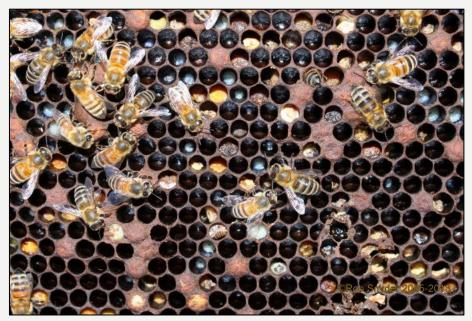
- Caused by *Melissococcus pluton*, a non-spore-forming bacteria, but infection is associated with variety of bacterial strains
- Only affects the honey bee larval stage and is more contagious than AFB
- More commonly affects stressed colonies
- May resolve spontaneously if stress is reduced and honey bee health is improved
- Less severe than AFB but can still cause devastating brood loss
- In recent years, has shifted its pathogenicity in U.S. → no longer spontaneously clears and likely to persist in hive

EFB VISUAL INSPECTION FINDINGS

- Shotgun/patchy brood pattern
- Poor colony buildup in spring—diseased larvae may be difficult to detect without thorough inspection
- Discolored larvae (yellow or brown)
- Twisted or corkscrew-shaped larvae
- Visible trachea in larvae
- No scale is formed—dead larval bodies are easily removed
- Often a "sour milk" odor
- Yellow royal jelly around larvae

Bee Informed Partnership

EFB DIAGNOSIS


- EFB and AFB share many visual characteristics
 - EFB should be a differential when signs of AFB/EFB are observed but characteristic tests (rope test and Holst milk test) are negative for AFB
- Commercial field test is available from Vita Europe (similar to AFB)
- Laboratory testing also available
 - Send brood samples to USDA Agricultural Research Service (ARS) laboratory in Beltsville, MD
 - See USDA-ARS Bee Research Laboratory website for more details on specimen submission
 - <u>https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-agricultural-research-center/bee-research-laboratory/</u>

EFB TREATMENT

- Oxytetracycline and tylosin have been used to treat EFB; however, oxytetracycline is the only drug FDA approved for EFB
- If infection is mild (<10% of brood infected), beekeeper may employ watchful waiting: infected frames are marked and colony is re-inspected in a week to identify if infection is spreading or improving
- In severe infections, recommended to remove frames with diseased brood and replace with new comb in addition to treatment with antibiotics
- Since the bacteria that causes EFB does not have a spore form, frame and equipment destruction is not required
 - Frames can be reused after several months of storage or sterilization with bleach solution

AFB & EFB LOOK-ALIKES

- Idiopathic Brood Disease (IBD) & Parasitic Mite Syndrome (PMS)
- May not require antibiotics for treatment
- Specific etiologic agents unknown but thought to be caused by multiple viruses and found in presence of secondary bacterial infections

Bee Informed Partnership

IDIOPATHIC BROOD DISEASE (IBD)

- Visual inspection findings
 - Shotgun/patchy brood pattern
 - Larvae may turn yellow but retain 'C' position
 - Larval death in pre-pupal stage-sticking straight up parallel to the cell
 - Larvae appear melted and gummy
 - Larvae eventually melt into dark gray
 - Perforated cappings
 - May form a loose scale
 - Often a foul odor (but different from EFB and AFB)
- Diagnosis
 - Pupal tongue not present
 - Rope test negative
 - No definitive field or laboratory test available
- Treatment
 - Mixed results with antibiotic treatment
 - Removing diseased frames and re-queening can be helpful

PARASITIC MITE SYNDROME (PMS)

- Varroa mites (*Varroa destructor*) are ectoparasites with worldwide distribution
- In the U.S. since 1987
- Number one killer of honey bees!
 - Feed on fat body tissue
 - Target larvae that are about to be capped \rightarrow move to bottom of cell and feed off larva once cell is capped \rightarrow mites mate inside the cell and mature \rightarrow once bee emerges from the cell, it will already have female mite offspring on it
- Cause larval or pupal death and can transmit a multitude of viruses and other pathogens (deformed wing virus, acute bee paralysis virus)
- PMS caused by viruses transmitted by the varroa mite
 - Exhibited in severely infested colonies
 - Most commonly seen late season in colonies where mites have not been actively managed
 - Deformed wing virus (DWV) is likely the major pathogen causing disease in PMS

Wikipedia

Entomology & Nematology Dept. University of Florida

PARASITIC MITE SYNDROME

- Visual inspection findings
 - Shotgun/patchy brood pattern
 - Melted larvae
 - Bees dying on emergence from cells with tongues sticking out
 - Guanine crystals on walls of cells (mite fecal deposits—appear as white spots)
 - Adult bees exhibiting deformed wings
 - Chewed pupae
 - Uncapped pupae (eyes visible)
 - Visible mites
- Diagnosis
 - Regular monitoring for mites (techniques vary)
- Treatment
 - Integrated pest management: active monitoring paired with physical, mechanical, and chemical controls, as needed
- Resource: Honey Bee Health Coalition <u>https://honeybeehealthcoalition.org/varroa/</u>

Wikipedia

Cox's Honey

OTHER BEE DISEASES & CONDITIONS

- Viral
 - Paralytic viruses
 - Sacbrood
- Microsporidial
 - Nosema
- Fungal
 - Chalkbrood
- Parasitic
 - Tracheal mites
 - Small hive beetles
- Other
 - Malnutrition
 - Pesticide toxicity
 - Colony Collapse Disorder

RESOURCES FOR Veterinarians

WHERE CAN I LEARN MORE?

- Textbooks:
 - Hot off the press! Honey Bee Medicine for the Veterinary Practitioner.
 www.wiley.com/buy/9781119583370. Wiley Press, 2021.
 - Honeybee Veterinary Medicine: Apis mellifera L. by Nicolas Vidal-Naquet. First Edition 2015. 5m Publishing.
- Web Module:
 - USDA-APHIS National Veterinary Accreditation Program Module 30: The Role of Veterinarians in Honey Bee Health: <u>https://nvap.aphis.usda.gov/BEE/bee0001.php</u>
- Web-based Resources:
 - Honey Bee Veterinary Consortium https://www.hbvc.org/
 - Honey Bee Health Coalition https://honeybeehealthcoalition.org/
 - Bee Informed Partnership https://beeinformed.org/
 - American Veterinary Medical Association: "Honey Bees 101 for Veterinarians" <u>https://www.avma.org/KB/Resources/Pages/Honey-Bees-101-Veterinarians.aspx</u>

REFERENCES

- American Beekeeping Federation. Pollination Facts. <u>http://www.abfnet.org/general/custom.asp?page=PollinatorFacts</u>
- American Veterinary Medical Association. Honey Bees 101 for Veterinarians. <u>https://www.avma.org/KB/Resources/Pages/Honey-Bees-101-Veterinarians.aspx</u>
- Bee Culture Magazine. 2012 Industry Survey.
- Foundation for Food and Agriculture Research (FFAR). Pollinator Health Fund. <u>http://foundationfar.org/pollinator-health-fund/</u>
- Great Pollinator Project. Major Threats to Pollinators.
 <u>http://greatpollinatorproject.org/conservation/major-threats-to-pollinators</u>
- National Agricultural Statistics Service, Agricultural Statistics Board, U.S. Department of Agriculture. 2019.
- National Veterinary Accreditation Program APHIS-Approved Supplemental Training. Module 29: Veterinary Feed Directive.

http://aast.cfsph.iastate.edu/VFD/index.htm

PRACTICE MANAGEMENT PROCEEDINGS June 5-7, 2022

Honey Bee Basics - Part 2

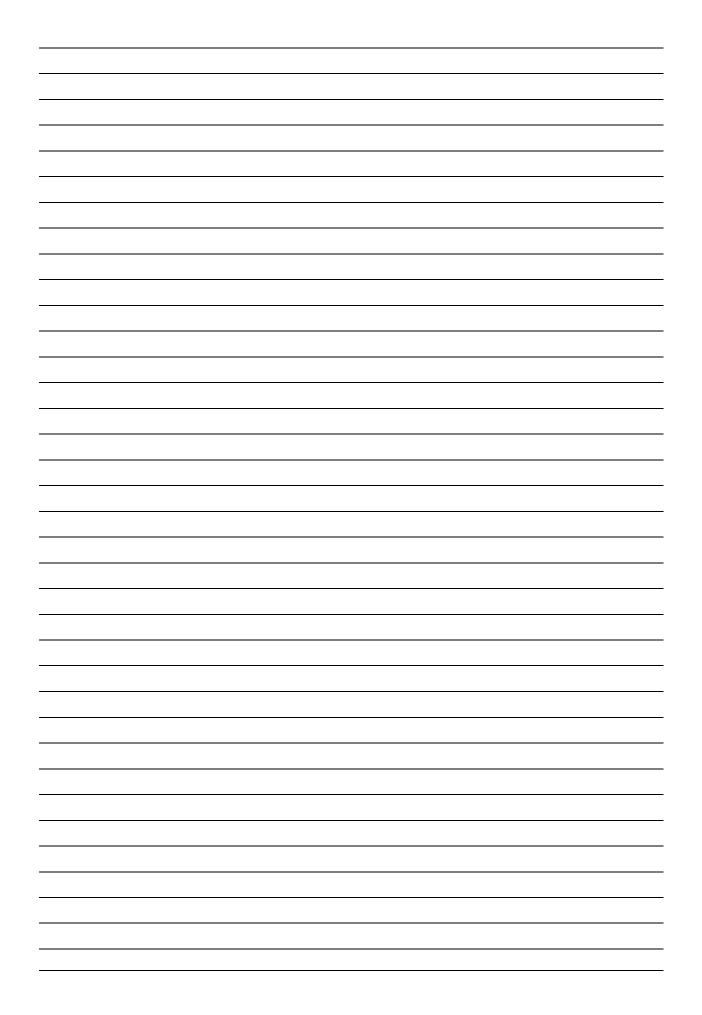
Kristen Clark, DVM, MPH, DACVPM

PRACTICE MANAGEMENT PROCEEDINGS June 5-7, 2022

Honey Bee Maladies and How Veterinarians Can Help – Part 1

Kristen Clark, DVM, MPH, DACVPM

PRACTICE MANAGEMENT PROCEEDINGS June 5-7, 2022


Honey Bee Maladies and How Veterinarians Can Help – Part 2

Kristen Clark, DVM, MPH, DACVPM

Notes

