Overview of Current Molecular Biology Techniques

VRSP Journal Club June 5, 2017

Chester McDowell

Outline

- DNA preparation and analysis
- RNA preparation and analysis
- RNA-Protein Complexes
- Proteins
- Cell Culture
- Organ-on-a-chip
- These all require sterile technique.
- <u>Contamination is always a major concern.</u>

DNA Preparation and Analysis

- DNA Extraction Protocols consist of two parts
 - Lyse cells and solubilize DNA
 - Removal of RNA, Protein, and other macromolecules
- Many labs now use purpose specific kits for extraction
 - Kits include:
 - Lysis Buffer
 - Pre-made columns
 - Other Buffers (Wash buffers and Elution buffers)
 - Advantages of these kits
 - Saves time
 - Easy and straight forward
 - Enabling extraction of DNA from different sample types

DNA Preparation and Analysis (cont.)

- Techniques following extraction
 - PCR
 - Restriction digestion
- Agarose gels are used to confirm successful reaction
 - PCR product
 - Complete digestion
- Retrieval of products from gel for downstream applications
 - Kits are available for:
 - Extracting product from gel
 - Cleaning-up PCR reaction after gel confirmation
- Some examples of downstream applications
 - Sequencing: Next Generation Sequencing (NGS), Sanger sequencing
 - Cloning applications

http://www.biotechniques.com/multimedia/archive/00231/BTN_A_000114133_O_F_231434a.jpg

Gel Electrophoresis

- Nucleic acids are negatively charged.
- Separate DNA based on size.
- Three major factors to consider when running a gel.
 - Pore size of gel
 - Voltage gradient
 - Salt concentration of running buffer
- There are many different types of gels that can be used for differing applications.
 - Agarose gels
 - Acrylamide gels
 - Polyacrylamide gels with urea for denaturation

Gel Electrophoresis (cont.)

- Voltage Gradients
 - Ohm's law: V=IR
 - V = voltage
 - I = current
 - R = resistance
- Factors that effect gradient
 - Thickness of gel
 - Ionic strength of buffer
- Increasing gradient increases mobility of sample
- Another factor to consider is the heat generated
 - P= I²R
 - P= Power (watts)
 - Others same as above
 - Gel apparatus can displace a certain amount of heat
 - Exceeding the heat capacity can lead to deleterious effects

RNA Preparation and Analysis

- Extraction of RNA is very similar to DNA
- However, samples are generally treated with proteases to remove ribonucleases that can degrade RNA
- RNA is not as stable as DNA and rapidly degrades
 - Must be kept on ice
- Why extract RNA?
 - Transcriptomics mRNA
 - Viral RNA
 - 16S rRNA sequencing
 - microRNA

RNA to dscDNA

RNA-Protein Complexes

- Several techniques for detecting and separating RNA-Protein complexes
 - Density-gradient sedimentation
 - Vertical native polyacrylamide gels
 - Gel filtration
- Assembly of complexes
 - RNA is transcribed that contains ³²P.
 - Incubate under conditions that promote the formation of complexes
- Complexes are run on an agarose gel.
- Gels are visualized on a Phosphorimager.
- Why study RNA-Protein complexes?
 - Protein misfolding
 - DNA/RNA does not show any mutations but there is no protein expression or protein is non-functional
 - Secondary structure in RNA
- What are some advantages of using agarose gels?
 - Simple
 - Inexpensive
 - Rapid
 - Multiplex

Protein: Molecular Modelling

- Isolate and purify experimentally expressed proteins
- Obtain structures using NMR or X-Ray Crystallography
- Structures are energy minimized to obtain the lowest energy structure
- Simulations require a structure for initial system setup
- There are many different simulations available for protein complexes. Selection depends on the goal.
 - Molecular Dynamic (MD) simulations: Atomistic
 - Coarse-grain simulations
 - QM/MM simulations
 - Ab initio MD

PDB code: 1DT7

Molecular Modelling (cont.)

- Simulations are commonly used for drug screening
 - Protein-drug interactions
 - Drug docking
- In some cases protein structures can not be solved with NMR or X-Ray crystallography and require some computational studies.
 - Homology Modelling
 - De-novo Modelling
 - Foldit video game where players try to fold a protein sequence into a 3D structure

http://www.disva.univpm.it/sites/www.disva.univpm.it/files/disva/laboratori/galeazzimodellistica/virtual%20screening.jpg

http://swift.cmbi.ru.nl/teach/EMHOMX/IMAGE/Fig2.png

Why do we use molecular modelling?

- Proteins have dynamic structures.
- Reduce the cost for experiments.
- However, there are limitations:
 - Size of the system that can be simulated
 - Computational cost
 - Accuracy of the force field
 - Experience of the user

Cell Cultures

- Some common uses in labs include
 - Titrations
 - Immunocytochemistry
 - Virus amplification
 - Virus Neutralization
 - Plaque Assays
- There are many cell lines available that are immortalized
 - MDCKs
 - BHK
 - Hela cells
 - Vero cells
 - etc
- Some experiments many require cell lines that are not available, so primary cell lines maybe required
 - These are cells isolated from a tissue sample and propagated in tissue culture flasks or petri dishes
 - They have a reduced passage capacity

http://molbiol.ru/forums/index.php?act=Attach&type=post&id=202120

Cell Culture (cont.)

- Cells require nutrients which are supplied by the cell media which will vary depending on the type of cells used
 - In general the media contains:
 - Amino acids, glucose, salts, vitamins, antibiotics and antimycotics
 - FBS and L-glutamine maybe added
- Depending on the cell line replication time will vary.
- Once cells have reached a 85-95% confluent the cells can be split.
 - Things to avoid
 - Splitting cells to soon
 - Splitting cells when they are overgrown
- Since the cells are grown on the surface of a flask they require the use of trypsin for detachment.
- Several new flasks can be made from one confluent flask.
- Labs generally keep frozen stocks of cell lines commonly used by the group.
 - Reasons:
 - Contamination
 - Cells get old
 - Certain cell lines may not be used all of the time
 - Reduce cost of cell maintenance
- Some experiments many require a certain cell density or cell viability
 - Hemacytometer
 - Trypan Blue Staining

Organ-on-a-chip

- Integration of 3D organ specific tissue and microfluidic network.
- This technology enables the study of drug and toxin metabolism by different organs.
- Reduce the use of animals for toxicity and early drug testing.
- Disadvantages
 - Experimental/novel technology requires validation
 - Low throughput
 - Costly
 - Use of immortalized cells can lead to misrepresentation of organ function

http://www.frame.org.uk/wp-content/uploads/2014/05/P2172692.jpg

Applications of Organ-on-a-chip

Current Opinion in Biotechnology 2017, 45:34-42

Human-on-a-chip Example

Current Opinion in Biotechnology 2017, 45:34-42